Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Teaching Insights

Education

School is to make students 'Yearn to Learn'. College is to get students to 'Learn to Learn'

KMOS: Assembly, integration and testing of three 0.8-2.5 micron spectrographs

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

RJ Masters, IJ Lewis, IAJ Tosh, M Tecza, J Lynn, REJ Watkins, A Clack, RL Davies, NA Thatte, M Tacon, R Makin, J Temple, A Pearce

Abstract:

KMOS is a second generation instrument in construction for use at the European Southern Observatory (ESO) Very Large Telescope (VLT). It operates in the near-infrared (0.8 to 2.5 microns) and employs 24 deployable, image slicing integral field units (IFUs) feeding three spectrographs. The spectrographs are designed and built by a partnership of the University of Oxford and Rutherford Appleton Laboratories (RAL). We describe the assembly, integration and alignment procedures involved in the construction of these spectrographs in detail. We also present the results of the cryogenic optical tests, including the first data taken through the full spectrograph optical train and the details of the test facility and procedures involved. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher

The Oxford SWIFT spectrograph: First commissioning and on-sky results

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, T Goodsall, L Fogarty, R Houghton, G Salter, N Scott, RL Davies, A Bouchez, R Dekany

Abstract:

The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/Δλ)∼4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235″;, 0.16″, and 0.08″ per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact. © 2010 Copyright SPIE - The International Society for Optical Engineering.
More details from the publisher

Adaptive optics systems for HARMONI: A visible and near-infrared integral field spectrograph for the E-ELT

Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)

Authors:

T Fusco, N Thatte, S Meimon, M Tecza, F Clarke, M Swinbank

Abstract:

HARMONI is a visible and near-infrared integral field spectrograph for the E-ELT. It needs to work at diffraction limited scales. This will be possible thanks to two adaptive optics systems, complementary to each other. Both systems will make use of the telescope's adaptive M4 and M5 mirrors. The first one is a simple but efficient Single Conjugate AO system (good performance, low sky coverage), fully integrated in HARMONI itself. The second one is a Laser Tomographic AO system (medium performance, very good sky coverage). We present the overall design of the SCAO system and discuss the complementary between SCAO and LTAO for HARMONI. © 2010 SPIE.
More details from the publisher

System study of EPICS, the exoplanets imager for the E-ELT

Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)

Authors:

C Vérinaud, M Kasper, JL Beuzit, RG Gratton, D Mesa, E Aller-Carpentier, E Fedrigo, L Abe, P Baudoz, A Boccaletti, M Bonavita, K Dohlen, N Hubin, F Kerber, V Korkiakoski, J Antichi, P Martinez, P Rabou, R Roelfsema, HM Schmid, N Thatte, G Salter, M Tecza, L Venema, H Hanenburg, R Jager, N Yaitskova, O Preis, M Orecchia, E Stadler

Abstract:

ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the concepts for common path and diffraction suppression system is presented. The performance of the instrument is predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through the various optical elements. © 2010 SPIE.
More details from the publisher

The gemini NICI planet-finding campaign

Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)

Authors:

MC Liu, Z Wahhaj, BA Biller, EL Nielsen, M Chun, LM Close, C Ftaclas, M Hartung, TL Hayward, F Clarke, IN Reid, EL Shkolnik, M Tecza, N Thatte, S Alencar, P Artymowicz, A Boss, A Burrows, E De Gouveia Dal Pino, J Gregorio-Hetem, S Ida, MJ Kuchner, D Lin, D Toomey

Abstract:

Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics (AO) system with a simultaneous dual-channel coronagraphic imager. Combined, with state-of-the-art AO observing methods and data processing, NICI typically achieves ≈2 magnitudes better contrast compared to previous ground-based or space-based planet-finding efforts, at separations inside of ≈2". In preparation for the Campaign, we carried out efforts to identify previously unrecognized, young stars as targets, to develop a rigorous quantitative method, for constructing our observing strategy, and to optimize the combination of angular differential imaging and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, target selection, implementation, on-sky performance, and preliminary results. The NICI Planet-Finding Campaign represents the largest and most sensitive imaging survey to date for massive (≳1 MJup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ≳5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments. © 2010 SPIE.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet