Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Young star clusters in interacting galaxies - NGC 1487 and NGC 4038/4039

ASTRONOMY & ASTROPHYSICS 489:3 (2008) 1091-1105

Authors:

S Mengel, MD Lehnert, NA Thatte, WD Vacca, B Whitmore, R Chandar
More details from the publisher
Details from ArXiV

The Centre of M83

ArXiv 0710.1727 (2007)

Authors:

RCW Houghton, N Thatte

Abstract:

Stellar kinematics show no evidence of hidden mass concentrations at the centre of M83. We show the clearest evidence yet of an age gradient along the starburst arc and interpret the arc to have formed from orbital motion away from a starforming region in the dust lane.
Details from ArXiV
More details from the publisher

Very high contrast IFU spectroscopy of AB Doradus C: 9 mag contrast at 0.2

Monthly Notices of the Royal Astronomical Society 378:4 (2007) 1229-1236

Authors:

N Thatte, Abuter, Roberto, Tecza, Matthias, Nielsen, Eric
More details from the publisher
More details
Details from ArXiV

New Photometry and Spectra of AB Doradus C: An Accurate Mass Determination of a Young Low-Mass Object with Theoretical Evolutionary Tracks

ArXiv astro-ph/0703564 (2007)

Authors:

Laird M Close, Niranjan Thatte, Eric L Nielsen, Roberto Abuter, Fraser Clarke, Matthias Tecza

Abstract:

We present new photometric and spectroscopic measurements for the unique, young, low-mass evolutionary track calibrator AB Dor C. While the new Ks photometry is similar to that previously published in Close et al. (2005) the spectral type is found to be earlier. Based on new H & K IFS spectra of AB Dor C (Thatte et al. 2007; paper 1) we adopt a spectral type of M5.5+/-1.0 for AB Dor C. This is considerably earlier than the M8+/-1 estimated in Close et al. (2005) and Nielsen et al. (2005) yet is consistent with the M6+/-1 independently derived by Luhman & Potter (2005). However, the spectrum presented in paper 1 and analyzed here is a significant improvement over any previous spectrum of AB Dor C. We also present new astrometry for the system which further supports a 0.090+/-0.005 Msun mass for the system. Once armed with an accurate spectrum and Ks flux we find L=0.0021+/-0.0005 Lsun and Teff=2925{+170}{-145}K for AB Dor C. These values are consistent with a ~75 Myr 0.090+/-0.005 Msun object like AB Dor C according to the DUSTY evolutionary tracks (Chabrier et al. 2000). Hence masses can be estimated from the HR diagram with the DUSTY tracks for young low-mass objects like AB Dor C. However, we cautiously note that underestimates of the mass from the tracks can occur if one lacks a proper (continuum preserved) spectra or is relying on NIR fluxes alone.
Details from ArXiV
More details from the publisher
More details

The centre of M83

Proceedings of the International Astronomical Union 3:S245 (2007) 307-308

Authors:

RCW Houghton, N Thatte

Abstract:

Stellar kinematics show no evidence of hidden mass concentrations at the centre of M83. We show the clearest evidence yet of an age gradient along the starburst arc and interpret the arc to have formed from orbital motion away from a starforming region in the dust lane. © 2008 Copyright International Astronomical Union 2008.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet