Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Teaching Insights

Education

School is to make students 'Yearn to Learn'. College is to get students to 'Learn to Learn'

Exploring high contrast limitations for image slicer based integral field spectrographs

Proceedings of SPIE - The International Society for Optical Engineering 7015 (2008)

Authors:

G Salter, N Thatte, M Tecza, F Clarke, C Verinaud, M Kasper, R Abuter

Abstract:

Current simulation and experimental investigatory work is going on into the performance of slicer and lenslet IFS designs. The aim of this work is to determine which technology holds the best promise for achieving the highest contrasts with EPICS on the E-ELT. Results from Spectral Deconvolution methods for high contrast detections are presented, both on sky images from AB Dor C observations using SINFONI on the VLT and improvements to the algorithms made through use of EPICS simulation data. Using these simulations, only containing photon and speckle noise, we have been able to detect simulated planets down to a contrast of 1010 located less than 1" from the parent star. The effects of spectral resolution and wavelength range on high contrast observations are discussed. Shortening the wavelength range increases the inner working angle. It is seen that an outer working angle is also reached that decreases with spectral resolution. The limit on the inner working angle can be overcome partly by increasing the wavelength range of the instrument although another inner working angle limit will be reached if a coronagraph is used. The limit of the outer working angle can also be overcome by increasing the spectral resolution of the instrument or possibly by making an IFS that produces an output with a constant spectral resolution, R,instead of constant Δλ.This is still a work in progress.
More details from the publisher

System design and analysis of the exo-planet imaging camera and spectrograph (EPICS) for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7014 (2008)

Authors:

C Vérinaud, V Korkiakoskia, N Yaitskova, P Martinez, EK Markus, Jean-Luc Beuzit, Lyu Abe, Pierr, Baudozd, Anthony Boccalettid, Kjetil Dohlene, GG Raffaele, Dino Mesaf, Florian Kerberb, Hans Martin Schmidg, Lars Venema, Graeme Slater, Matthias Tecza, AT Niranjan

Abstract:

One of the main science objectives of the European ELT is the direct imaging of extrasolar planets. The large aperture of the telescope has the potential to significantly enlarge the discovery space towards older gas giant exo-planets seen in reflected light. In this paper, we give an overview of the EPICS system design strategy during the phase A study. In order to tackle the critical limitations to high contrast, extensive end-to-end simulations will be developed since the start to test different scenarios and guide the overall design. Keywords: Extremely Large Telescope, high contrast imaging, extrasolar planets, instrumentation, adaptive optics.
More details from the publisher
More details

Young star clusters in the Antennae galaxies and NGC 1487

Astronomische Nachrichten 329:9-10 (2008) 944-947

Authors:

S Mengel, MD Lehnert, N Thatte, B Whitmore, WD Vacca, R Chandar

Abstract:

We estimate the dynamical masses of several young (≈10 Myr) massive star clusters in two interacting galaxies, NGC 4038/4039 ("The Antennae") and NGC 1487, under the assumption of virial equilibrium. These are compared with photometric mass estimates. A dynamical mass substantially higher than the photometric estimate could indicate non-virial motion of the stars in the cluster, and potentially lead to cluster disruption. All but one of the Antennae clusters have dynamical and photometric mass estimates which are within a factor ≈ 2 of one another, implying both that standard IMFs provide a good approximation to the IMF of these clusters, and that there is no significant extra-virial motion, as would be expected if they were rapidly dispersing. These results suggest that almost all of the clusters in our sample have survived the gas removal phase as bound or marginally bound objects. But a few targets (two in NGC 1487 and one in the Antennae) have Mdyn estimates which are significantly larger than the photometric mass estimates. At least two of those clusters may be actively in the process of dissolving. The dissolution candidates in both galaxies are amongst the clusters with the lowest pressures/densities measured in our sample. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
More details from the publisher
More details

SWIFT de-magnifying image slicer: Diffraction limited image slicing at optical wavelengths

Proceedings of SPIE - The International Society for Optical Engineering 7018 (2008)

Authors:

M Tecza, N Thatte, F Clarke, L Fogarty, T Goodsall, G Salter, D Freeman, Y Salaun

Abstract:

We present the manufacturing and first results from testing and characterising the SWIFT image slicer. The SWIFT image slicer design is based on the MPE-3D and SPIFFI image slicers. It uses plane mirrors to slice the input field but through a novel, de-magnifying design, using a mosaic of spherical lenses, it achieves a considerable de-magnification. Classical polishing techniques can be applied to manufacture both plane and spherical surfaces with very high surface accuracy and quality reducing aberrations and scattered light. The SWIFT image slicer was manufactured over a 18 months period and was delivered to Oxford in September 2007. The commissioning of the SWIFT instrument will take place in August/September 2008.
More details from the publisher

The Central Region of M83

ArXiv 0801.1213 (2008)

Authors:

RCW Houghton, N Thatte

Abstract:

We combine VLT/ISAAC NIR spectroscopy with archival HST/WFPC2 and HST/NICMOS imaging to study the central 20"x20" of M83. Our NIR indices for clusters in the circumnuclear star-burst region are inconsistent with simple instantaneous burst models. However, models of a single burst dispersed over a duration of 6 Myrs fit the data well and provide the clearest evidence yet of an age gradient along the star forming arc, with the youngest clusters nearest the north-east dust lane. The long slit kinematics show no evidence to support previous claims of a second hidden mass concentration, although we do observe changes in molecular gas velocity consistent with the presence of a shock at the edge of the dust lane.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet