Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Entanglement without nonlocality

Physical Review A - Atomic, Molecular, and Optical Physics 76:6 (2007)

Authors:

C Hewitt-Horsman, V Vedral

Abstract:

We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases. © 2007 The American Physical Society.
More details from the publisher
More details

Optomechanical entanglement between a movable mirror and a cavity field

Conference on Lasers and Electro-Optics Europe - Technical Digest (2007)

Authors:

D Vitali, S Gigan, A Ferreira, HR Böhm, P Tombesi, A Guerreiro, V Vedral, A Zeilinger, M Aspelmeyer
More details from the publisher

Spatial entanglement from off-diagonal long-range order in a Bose-Einstein condensate

Physical Review A - Atomic, Molecular, and Optical Physics 76:5 (2007)

Authors:

L Heaney, J Anders, D Kaszlikowski, V Vedral

Abstract:

We investigate spatial entanglement-particle-number entanglement between regions of space-in an ideal bosonic gas. We quantify the amount of spatial entanglement around the transition temperature for condensation (TC) by probing the gas with two localized two-level systems. We show that spatial entanglement in the gas is directly related to filling of the ground-state energy level and therefore to the off-diagonal long-range order of the system and the onset of condensation. © 2007 The American Physical Society.
More details from the publisher
More details

Nonlocality of a single particle.

Phys Rev Lett 99:18 (2007) 180404

Authors:

Jacob Dunningham, Vlatko Vedral

Abstract:

There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objections by presenting an experimentally feasible scheme that uses realistic initial states. Furthermore, all the techniques required for photons are equally applicable to atoms. It should, therefore, also be possible to use this scheme to verify the nonlocality of a single massive particle.
More details from the publisher
More details

Dimensionality-induced entanglement in macroscopic dimer systems

Physical Review A - Atomic, Molecular, and Optical Physics 76:5 (2007)

Authors:

D Kaszlikowski, W Son, V Vedral

Abstract:

We investigate entanglement properties of mixtures of short-range spin- s dimer coverings in lattices of arbitrary topology and dimension. We show that in one spatial dimension nearest neighbor entanglement exists for any spin s. Surprisingly, in higher spatial dimensions there is a threshold value of spin s below which the nearest neighbor entanglement disappears. The traditional "classical" limit of large spin value corresponds to the highest nearest neighbor entanglement that we quantify using the negativity. © 2007 The American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 104
  • Page 105
  • Page 106
  • Page 107
  • Current page 108
  • Page 109
  • Page 110
  • Page 111
  • Page 112
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet