Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Controllable Quantum Switchboard

(2007)

Authors:

D Kaszlikowski, LC Kwek, CH Lai, V Vedral
More details from the publisher

Regional versus Global Entanglement in Resonating-Valence-Bond states

(2007)

Authors:

Anushya Chandran, Dagomir Kaszlikowski, Aditi Sen De, Ujjwal Sen, Vlatko Vedral
More details from the publisher

When Do Superfluidity and Long Range Order Imply Entanglement?

(2007)
More details from the publisher

Entanglement in Many-Body Systems

(2007)

Authors:

Luigi Amico, Rosario Fazio, Andreas Osterloh, Vlatko Vedral
More details from the publisher

Macroscopic entanglement and phase transitions

Open Systems and Information Dynamics 14:1 (2007) 1-16

Authors:

J Anders, V Vedral

Abstract:

This paper summarises the results of our research on macroscopic entanglement in spin systems and free Bosonic gases. We explain how entanglement can be observed using entanglement witnesses which are themselves constructed within the framework of thermodynamics and thus macroscopic observables. These thermodynamical entanglement witnesses result in bounds on macroscopic parameters of the system, such as the temperature, the energy or the susceptibility, below which entanglement must be present. The derived bounds indicate a relationship between the occurrence of entanglement and the establishment of order, possibly resulting in phase transition phenomena. We give a short overview over the concepts developed in condensed matter physics to capture the characteristics of phase transitions in particular in terms of order and correlation functions. Finally we want to ask and speculate whether entanglement could be a generalised order concept by itself, relevant in (quantum induced) phase transitions such as BEC, and that taking this view may help us to understand the underlying process of high-T superconductivity. © Springer Science+Business Media B.V. 2007.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 108
  • Page 109
  • Page 110
  • Page 111
  • Current page 112
  • Page 113
  • Page 114
  • Page 115
  • Page 116
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet