Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Spin quantum correlations of relativistic particles

(2011)

Authors:

Pablo L Saldanha, Vlatko Vedral
More details from the publisher

A functional interpretation of continuous variable quantum discord

Optics InfoBase Conference Papers (2011) 1200-1202

Authors:

S Assad, H Chrzanowski, T Symul, PK Lam, T Ralph, M Gu, V Vedral

Abstract:

We show that quantum discord can quantify the information advantage of a quantum processing over an optimal classical processing. We experimentally extract a lower bound on the quantum discord of a non-entangled continuous-variable quantum system. © 2011 AOS.

A functional interpretation of continuous variable quantum discord

2011 Int. Quantum Electron. Conf., IQEC 2011 and Conf. Lasers and Electro-Optics, CLEO Pacific Rim 2011 Incorporating the Australasian Conf. Optics, Lasers and Spectroscopy and the Australian Conf. (2011) 1200-1202

Authors:

S Assad, H Chrzanowski, T Symul, PK Lam, T Ralph, M Gu, V Vedral

Abstract:

We show that quantum discord can quantify the information advantage of a quantum processing over an optimal classical processing. We experimentally extract a lower bound on the quantum discord of a non-entangled continuous-variable quantum system. © 2011 IEEE.
More details from the publisher

Quantum Correlations in Mixed-State Metrology

Physical Review X 1:2 (2011) 1-9

Authors:

K Modi, H Cable, M Williamson, V Vedral

Abstract:

We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment.We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives ffiffiffiffi N p enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.
More details from the publisher
More details

Physical interpretation of the Wigner rotations and its implications for relativistic quantum information

(2011)

Authors:

Pablo L Saldanha, Vlatko Vedral
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • Current page 82
  • Page 83
  • Page 84
  • Page 85
  • Page 86
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet