Geometric-phase backaction in a mesoscopic qubit-oscillator system
Physical Review A - Atomic, Molecular, and Optical Physics 85:2 (2012)
Abstract:
We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro- and nanomechanical devices coupled to an effective two-level system. © 2012 American Physical Society.Operational Significance of Discord Consumption: Theory and Experiment
(2012)
Photon production from the vacuum close to the superradiant transition: Linking the dynamical Casimir effect to the Kibble-Zurek mechanism
Physical Review Letters 108:9 (2012)
Abstract:
The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition. © 2012 American Physical Society.Physics. Moving beyond trust in quantum computing.
Science 335:6066 (2012) 294-295