Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Photon production from the vacuum close to the superradiant transition: Linking the dynamical Casimir effect to the Kibble-Zurek mechanism

Physical Review Letters 108:9 (2012)

Authors:

G Vacanti, S Pugnetti, N Didier, M Paternostro, GM Palma, R Fazio, V Vedral

Abstract:

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition. © 2012 American Physical Society.
More details from the publisher
More details
More details

Physics. Moving beyond trust in quantum computing.

Science 335:6066 (2012) 294-295
More details from the publisher
More details

Measuring quantumness via anticommutators

(2012)

Authors:

Rosario Fazio, Kavan Modi, Saverio Pascazio, Vlatko Vedral, Kazuya Yuasa
More details from the publisher

Observing the operational significance of discord consumption

Nature Physics 8:9 (2012) 671-675

Authors:

M Gu, HM Chrzanowski, SM Assad, T Symul, K Modi, TC Ralph, V Vedral, PK Lam

Abstract:

Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource. © 2012 Macmillan Publishers Limited. All rights reserved.
More details from the publisher

Quantum discord as resource for remote state preparation

Nature Physics 8:9 (2012) 666-670

Authors:

B Dakić, YO Lipp, X Ma, M Ringbauer, S Kropatschek, S Barz, T Paterek, V Vedral, A Zeilinger, C Brukner, P Walther

Abstract:

The existence of better-than-classical quantum information processing (QIP) models which consume very little or no entanglement suggests that separable or weakly entangled states could be extremely useful tools for information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a resource of advantage is the generation of quantum discord, a measure of non-classical correlations that includes entanglement as a subset. Here we show that quantum discord is the necessary resource for quantum remote state preparation. We explicitly show that the geometric measure of quantum discord is related to the fidelity of this task, which provides its operational meaning. Our results are experimentally demonstrated using photonic quantum systems. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient QIP. © 2012 Macmillan Publishers Limited. All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • Current page 79
  • Page 80
  • Page 81
  • Page 82
  • Page 83
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet