The herschel ATLAS
Publications of the Astronomical Society of the Pacific 122:891 (2010) 499-515
Abstract:
The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg 2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands. © 2010. The Astronomical Society of the Pacific. All rights reserved.Herschel-ATLAS: Evolution of the 250 μm luminosity function out to z = 0.5
ASTRONOMY & ASTROPHYSICS 518 (2010) ARTN L10
The Herschel ATLAS
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC 122:891 (2010) 499-515
The sins survey: Sinfoni integral field spectroscopy of z 2 star-forming galaxies
Astrophysical Journal 706:2 (2009) 1364-1428
Abstract:
We present the Spectroscopic Imaging survey in the near-infrared (near-IR) with SINFONI (SINS) of high-redshift galaxies. With 80 objects observed and 63 detected in at least one rest-frame optical nebular emission line, mainly Hα, SINS represents the largest survey of spatially resolved gas kinematics, morphologies, and physical properties of star-forming galaxies at z 1-3. We describe the selection of the targets, the observations, and the data reduction. We then focus on the "SINS Hα sample," consisting of 62 rest-UV/optically selected sources at 1.3 < z < 2.6 for which we targeted primarily the Hα and [N II] emission lines. Only ≈ 30% of this sample had previous near-IR spectroscopic observations. The galaxies were drawn from various imaging surveys with different photometric criteria; as a whole, the SINS Hα sample covers a reasonable representation of massive M* ≳ 1010 M ·star-forming galaxies at z 1.5-2.5, with some bias toward bluer systems compared to pure K-selected samples due to the requirement of secure optical redshift. The sample spans 2 orders of magnitude in stellar mass and in absolute and specific star formation rates, with median values ≈ 3 × 1010 M ·, ≈ 70 M· yr-1, and 3 Gyr-1. The ionized gas distribution and kinematics are spatially resolved on scales ranging from 1.5 kpc for adaptive optics assisted observations to typically 4-5 kpc for seeing-limited data. The Hα morphologies tend to be irregular and/or clumpy. About one-third of the SINS Hα sample galaxies are rotation-dominated yet turbulent disks, another one-third comprises compact and velocity dispersion-dominated objects, and the remaining galaxies are clear interacting/merging systems; the fraction of rotation-dominated systems increases among the more massive part of the sample. The Hα luminosities and equivalent widths suggest on average roughly twice higher dust attenuation toward the H II regions relative to the bulk of the stars, and comparable current and past-averaged star formation rates. © 2009. The American Astronomical Society.Integral-field spectroscopy of a Lyman-break galaxy at z = 3.2: Evidence for merging
Astronomy and Astrophysics 479:1 (2008) 67-73