Obscured activity: AGN, quasars, starbursts and uligs observed by the infrared space observatory
(2005) 355-407
Abstract:
Some of the most 'active' galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid-and farinfrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies. © 2005 Springer.Study of local infrared bright galaxies with HERSHCEL-PACS
Astronomische Nachrichten 326:7 (2005) 523-524
Abstract:
Infrared bright galaxies (LIRGs and ULIRGs) represent the bulk of the cosmic infrared background and play a major role in the cosmic star formation and accretion histories. For this reason they have been subject of intensive studies at all wavelengths. However, being very dusty galaxies, one of the key wavelength range to understand their evolutionary stages and the physic involved, is the Mid-Far-Infrared and sub-millimeter window. Previous (IRAS and ISO) and current (SPITZER) infrared missions, already shed light on the nature and the evolution of these galaxies, but still many phenomena lack of a complete understanding. For example, the processes triggering the starburst and AGN activities as well as trends with the interaction stage, are not well established yet, partially because at FIR wavelengths it has not been possible so far to spatially resolve these different components even in nearby objects. With its passively cooled 3.5 meter telescope, HERSCHEL will offer this opportunity for the first time. In particular, the PACS instrument, is unique for tackling some important open issues thanks to its spectro imaging capability at FIR wavelengths. We will illustrate some of these exciting new opportunities using examples from the Guaranteed Time program on infrared bright galaxies, that is currently being developed. ISO has undoubtedly shown that the use of Mid-Far-infrared spectroscopy is a powerful tool for establishing the physical conditions of the ISM and separating the starburst and AGN activity contributions which often coexist in (U)LIRGs. However, such a coexistence makes the central regions of (U)LIRG very peculiar such that we expect the ISM in their central regions to be very different than in normal star-forming galaxies. One known example is the fact that ultra luminous infrared galaxies have less [CII] emission w.r.t. the total FIR emission ([CII] deficiency) than what is found in normal galaxies. This result, found in several studies based on ISO spectroscopy, points towards a different heating/cooling balance of the ISM in infrared bright galaxies, but the causes and the related physic remain unknown. With PACS it will be possible to take full resolution complete PACS scans of representative nearby sources such that we can probe the ISM physics in central starbursts, the circum-nuclear molecular rings, disks and winds, separately. Moreover, a survey of the most important FIR structure lines will become feasable for large samples spanning from starburst, AGNs and obscured objects, at local and intermediate redshift. Observations with the PACS photometric camera in its three bands (70,110 and 170 μm) will complement the science possible with the integral field spectroscopy, because HERSCHEL will be able to resolve for the first time individual dust enshrouded activity knots, i.e. the place where star formation is triggered, to locate the starburst regions and their relative contributions in interacting systems. Due to the unprecedent spatial resolution HERSCHEL provides at FIR and sub-millimeter wavelengths and the improved sensitivities of its instruments, we expect that a significant part of HERSCHEL observing time will be spent on the study of high redshift galaxies. Detailed studies of nearby templates, as illustrated here, will significantly contribute in understanding in detail the physics governing the diagnostic diagrams and the change in spectral characteristics which are the basic tools for studying unresolved galaxies at high redshift. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Obscured activity: AGN, quasars, starbursts and ULIGs observed by the infrared space observatory
Space Science Reviews 119:1-4 (2005) 355-407
Abstract:
Some of the most 'active' galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid- and far-infrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies. © Springer 2005.The European Large Area ISO Survey - VIII. 90-μm final analysis and source counts
Monthly Notices of the Royal Astronomical Society 354:3 (2004) 924-934
Abstract:
We present a re-analysis of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) 90-μm observations carried out with ISOPHOT, an instrument on board the ISO of the European Space Agency. With more than 12 deg2, the ELAIS survey is the largest area covered by ISO in a single programme and is about one order of magnitude deeper than the IRAS 100-μm survey. The data analysis is presented and was mainly performed with the PHOT interactive analysis software but using the pairwise method of Stickel et al. for signal processing from edited raw data to signal per chopper plateau. The ELAIS 90-μm catalogue contains 237 reliable sources with fluxes larger than 70 mJy and is available in the electronic version of this article. Number counts are presented and show an excess above the no-evolution model prediction. This confirms the strong evolution detected at shorter (15 μm) and longer (170 μm) wavelengths in other ISO surveys. The ELAIS counts are in agreement with previous works at 90 μm and in particular with the deeper counts extracted from the Lockman hole observations. Comparison with recent evolutionary models show that the models of Franceschini et al. and Guiderdoni et al. (which includes a heavily extinguished population of galaxies) give the best fit to the data. Deeper observations are nevertheless required to discriminate better between the model predictions in the far-infrared, and are scheduled with the Spitzer Space Telescope, which has already started operating, and will also be performed by ASTRO-F.The European Large-Area ISO Survey (ELAIS): The final band-merged catalogue
Monthly Notices of the Royal Astronomical Society 351:4 (2004) 1290-1306