The discovery of a massive supercluster at z = 0.9 in the UKIDSS deep eXtragalactic survey
Monthly Notices of the Royal Astronomical Society 379:4 (2007) 1343-1351
Abstract:
We analyse the first publicly released deep field of the UK Infrared Deep Sky Survey (UKIDSS) Deep eXtragalactic Survey to identify candidate galaxy overdensities at z ∼ 1 across ∼1 deg2 in the ELAIS-N1 field. Using I - K, J - K and K - 3.6 μm colours, we identify and spectroscopically follow up five candidate structures with Gemini/Gemini Multi-Object Spectrograph and confirm that they are all true overdensities with between five and 19 members each. Surprisingly, all five structures lie in a narrow redshift range at z = 0.89 ± 0.01, although they are spread across 30 Mpc on the sky. We also find a more distant overdensity at z = 1.09 in one of the spectroscopic survey regions. These five overdense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogues from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift. © 2007 RAS.Young galaxies in the early universe:: The physical properties of luminous z∼5 LBGs derived from their rest-frame UV to visible SEDs
AT THE EDGE OF THE UNIVERSE: LATEST RESULTS FROM THE DEEPEST ASTRONOMICAL SURVEYS 380 (2007) 75-+
The rapid formation of a large rotating disk galaxy three billion years after the Big Bang
Nature 442:7104 (2006) 786-789
Abstract:
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks - the primary components of present-day galaxies - were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger. © 2006 Nature Publishing Group.Sinfoni integral field spectroscopy of z ∼ 2 UV-selected galaxies: Rotation curves and dynamical evolution
Astrophysical Journal 645:2 I (2006) 1062-1075
Abstract:
We present ∼0″5 resolution near-infrared integral field spectroscopy of the Hα line emission of 14 z ∼ 2 UV-selected BM/BX galaxies, obtained with SINFONI at the ESO Very Large Telescope. The average Hα half-light radius is r1/2 ≈4 h70-1 kpc, and line emission is detected over ≳20 h70-1 kpc in several sources. In nine galaxies, we detect spatially resolved velocity gradients, from 40 to 410 km s-1 over ∼10 h70-1 kpc. The kinematics of the larger systems are generally consistent with orbital motions. Four galaxies are well described by rotating clumpy disks, and we extracted rotation curves out to radii ≳10 h 70-1 kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities of vc ∼ 180 ± 90 km s-1 and dynamical masses from ∼0.5 to 25 × 1010 h70-1 M ⊙ within r1/2- The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. Moreover, the specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average vc at 10 h 70-1 kpc, the virial mass of the typical halo of a galaxy in our sample is 1011.7±0.5 h70-1 M ⊙. Kinematic modeling of the three best cases implies a ratio of vc to local velocity dispersion vc/σ ∼ 2-4 and, accordingly, a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ∼500 Myr. We also argue that if our BM/BX galaxies were initially gas-rich, their clumpy disks would subsequently lose their angular momentum and form compact bulges on a timescale of ∼1 Gyr. © 2006. The American Astronomical Socieity. All rights reserved.Anglo-australian telescope imaging and microslit spectroscopy in the southern bubble deep field
Astronomical Journal 131:5 (2006) 2383-2393