Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Aprajita Verma

Senior Research Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Astronomical instrumentation
  • Galaxy formation and evolution
  • Rubin-LSST
  • Extremely Large Telescope
aprajita.verma@physics.ox.ac.uk
Telephone: 01865 (2)73374
Denys Wilkinson Building, room 760
  • About
  • Outreach
  • Teaching
  • Publications

The discovery of a massive supercluster at z = 0.9 in the UKIDSS deep eXtragalactic survey

Monthly Notices of the Royal Astronomical Society 379:4 (2007) 1343-1351

Authors:

AM Swinbank, AC Edge, I Smail, JP Stott, M Bremer, Y Sato, C Van Breukelen, M Jarvis, I Waddington, L Clewley, J Bergeron, G Cotter, S Dye, JE Geach, E Gonzalez-Solares, P Hirst, RJ Ivison, S Rawlings, C Simpson, GP Smith, A Verma, T Yamada

Abstract:

We analyse the first publicly released deep field of the UK Infrared Deep Sky Survey (UKIDSS) Deep eXtragalactic Survey to identify candidate galaxy overdensities at z ∼ 1 across ∼1 deg2 in the ELAIS-N1 field. Using I - K, J - K and K - 3.6 μm colours, we identify and spectroscopically follow up five candidate structures with Gemini/Gemini Multi-Object Spectrograph and confirm that they are all true overdensities with between five and 19 members each. Surprisingly, all five structures lie in a narrow redshift range at z = 0.89 ± 0.01, although they are spread across 30 Mpc on the sky. We also find a more distant overdensity at z = 1.09 in one of the spectroscopic survey regions. These five overdense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogues from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift. © 2007 RAS.
More details from the publisher
More details
Details from ArXiV

Young galaxies in the early universe:: The physical properties of luminous z∼5 LBGs derived from their rest-frame UV to visible SEDs

AT THE EDGE OF THE UNIVERSE: LATEST RESULTS FROM THE DEEPEST ASTRONOMICAL SURVEYS 380 (2007) 75-+

Authors:

Aprajita Verma, Matthew Lehnert, Natascha Foerster Schreiber, Malcolm Bremer, Laura Douglas
More details

The rapid formation of a large rotating disk galaxy three billion years after the Big Bang

Nature 442:7104 (2006) 786-789

Authors:

R Genzel, LJ Tacconi, F Eisenhauer, NM Förster Schreiber, A Cimatti, E Daddi, N Bouché, R Davies, MD Lehnert, D Lutz, N Nesvadba, A Verma, R Abuter, K Shapiro, A Sternberg, A Renzini, X Kong, N Arimoto, M Mignoli

Abstract:

Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks - the primary components of present-day galaxies - were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger. © 2006 Nature Publishing Group.
More details from the publisher
More details

Sinfoni integral field spectroscopy of z ∼ 2 UV-selected galaxies: Rotation curves and dynamical evolution

Astrophysical Journal 645:2 I (2006) 1062-1075

Authors:

NM Förster Schreiber, R Genzei, MD Lehnert, N Bouché, A Verma, DK Erb, AE Shapley, CC Steidel, R Davies, D Lutz, N Nesvadba, LJ Tacconi, F Eisenhauer, R Abuter, A Gilbert, S Gillessen, A Sternberg

Abstract:

We present ∼0″5 resolution near-infrared integral field spectroscopy of the Hα line emission of 14 z ∼ 2 UV-selected BM/BX galaxies, obtained with SINFONI at the ESO Very Large Telescope. The average Hα half-light radius is r1/2 ≈4 h70-1 kpc, and line emission is detected over ≳20 h70-1 kpc in several sources. In nine galaxies, we detect spatially resolved velocity gradients, from 40 to 410 km s-1 over ∼10 h70-1 kpc. The kinematics of the larger systems are generally consistent with orbital motions. Four galaxies are well described by rotating clumpy disks, and we extracted rotation curves out to radii ≳10 h 70-1 kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities of vc ∼ 180 ± 90 km s-1 and dynamical masses from ∼0.5 to 25 × 1010 h70-1 M ⊙ within r1/2- The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. Moreover, the specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average vc at 10 h 70-1 kpc, the virial mass of the typical halo of a galaxy in our sample is 1011.7±0.5 h70-1 M ⊙. Kinematic modeling of the three best cases implies a ratio of vc to local velocity dispersion vc/σ ∼ 2-4 and, accordingly, a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ∼500 Myr. We also argue that if our BM/BX galaxies were initially gas-rich, their clumpy disks would subsequently lose their angular momentum and form compact bulges on a timescale of ∼1 Gyr. © 2006. The American Astronomical Socieity. All rights reserved.
More details from the publisher

Anglo-australian telescope imaging and microslit spectroscopy in the southern bubble deep field

Astronomical Journal 131:5 (2006) 2383-2393

Authors:

K Glazebrook, A Verma, B Boyle, S Oliver, RG Mann, D Monbleau

Abstract:

We present a deep photometric (B- and R-band) catalog and an associated spectroscopic redshift survey conducted in the vicinity of the Hubble Deep Field-South. The spectroscopy yields 53 extragalactic redshifts in the range 0 < z < 1.4, substantially increasing the body of spectroscopic work in this field to over 200 objects. The targets are selected from deep Anglo-Australian Telescope prime-focus images complete to R < 24, and the spectroscopy is 5 0% complete at R = 23. There is now strong evidence for a rich cluster at z ≃ 0.5 8 flanking the Wide Field Planetary Camera 2 field, which is consistent with a known absorber of the bright QSO in this field. We find that photometric redshifts of z < 1 galaxies in this field based on Hubble Space Telescope data are accurate to σ z/(1 + z) = 0.03 (albeit with small number statistics). The observations were carried out as a community service for Hubble Deep Field science in order to demonstrate the first use of the nod-and-shuffle technique with a classical multiobject spectrograph and to test the use of microslits for ultrahigh multiplex observations along with a new volume phase holographic grism and deep-depletion CCD. The reduction of this new type of data is also described. © 2006. The American Astronomical Society. All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet