Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Sebastian Von Hausegger

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics
  • Biological physics
  • Particle astrophysics & cosmology

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Oxford Molecular Motors
  • Cosmology
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
sebastian.vonhausegger@physics.ox.ac.uk
Telephone: 01865210826
Rudolf Peierls Centre for Theoretical Physics, room 50.25
  • About
  • Teaching
  • Research
  • Outreach
  • Publications

The expected kinematic matter dipole is robust against source evolution

ArXiv 2404.07929 (2024)
Details from ArXiV

B-mode polarization forecasts for GreenPol

Astronomy & Astrophysics EDP Sciences 684 (2024) a128

Authors:

U Fuskeland, A Kaplan, IK Wehus, HK Eriksen, PR Christensen, S von Hausegger, H Liu, PM Lubin, PR Meinhold, P Naselsky, H Thommesen, A Zonca
More details from the publisher
More details

Spatially homogeneous universes with late-time anisotropy

Classical and Quantum Gravity IOP Publishing 40:24 (2023) 245015

Authors:

Andrei Constantin, Thomas R Harvey, Sebastian von Hausegger, Andre Lukas

Abstract:

The cosmological principle asserts that on sufficiently large scales the Universe is homogeneous and isotropic on spatial slices. To deviate from this principle requires a departure from the FLRW ansatz. In this paper we analyze the cosmological evolution of two spatially homogeneous but anisotropic universes, namely the spatially closed Kantowski–Sachs Universe and the open axisymmetric Bianchi type III Universe. These models are characterized by two scale factors and we study their evolution in universes with radiation, matter and a cosmological constant. In all cases, the two scale factors evolve differently and this anisotropy leads to a lensing effect in the propagation of light. We derive explicit formulae for computing redshifts, angular diameter distances and luminosity distances and discuss the predictions of these models in relation to observations for type Ia supernovae and the CMB. We comment on the possibility of explaining the observed luminosity distance plot for type Ia supernovae within the context of cosmologies featuring late-time anisotropy and a vanishing cosmological constant.
More details from the publisher
Details from ORA
More details

Spatially homogeneous universes with late-time anisotropy

Classical and Quantum Gravity IOP Publishing 40 (2023) 245015

Authors:

Andrei Constantin, Thomas Harvey, Sebastian Von Hausegger, Andre Lukas

Abstract:

The cosmological principle asserts that on sufficiently large scales the Universe is homogeneous and isotropic on spatial slices. To deviate from this principle requires a departure from the FLRW ansatz. In this paper we analyze the cosmological evolution of two spatially homogeneous but anisotropic universes, namely the spatially closed Kantowski–Sachs Universe and the open axisymmetric Bianchi type III Universe. These models are characterized by two scale factors and we study their evolution in universes with radiation, matter and a cosmological constant. In all cases, the two scale factors evolve differently and this anisotropy leads to a lensing effect in the propagation of light. We derive explicit formulae for computing redshifts, angular diameter distances and luminosity distances and discuss the predictions of these models in relation to observations for type Ia supernovae and the CMB. We comment on the possibility of explaining the observed luminosity distance plot for type Ia supernovae within the context of cosmologies featuring late-time anisotropy and a vanishing cosmological constant.
More details from the publisher
Details from ORA

Impact of Galactic dust non-Gaussianity on searches for B-modes from inflation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:3 (2023) 5751-5766

Authors:

Irene Abril-Cabezas, Carlos Hervías-Caimapo, Sebastian von Hausegger, Blake D Sherwin, David Alonso

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>A key challenge in the search for primordial B-modes is the presence of polarized Galactic foregrounds, especially thermal dust emission. Power-spectrum-based analysis methods generally assume the foregrounds to be Gaussian random fields when constructing a likelihood and computing the covariance matrix. In this paper, we investigate how non-Gaussianity in the dust field instead affects CMB and foreground parameter inference in the context of inflationary B-mode searches, capturing this effect via modifications to the dust power-spectrum covariance matrix. For upcoming experiments such as the Simons Observatory, we find no dependence of the tensor-to-scalar ratio uncertainty $\sigma (r)$ on the degree of dust non-Gaussianity or the nature of the dust covariance matrix. We provide an explanation of this result, noting that when frequency decorrelation is negligible, dust in mid-frequency channels is cleaned using high-frequency data in a way that is independent of the spatial statistics of dust. We show that our results hold also for non-zero levels of frequency decorrelation that are compatible with existing data. We find, however, that neglecting the impact of dust non-Gaussianity in the covariance matrix can lead to inaccuracies in goodness-of-fit metrics. Care must thus be taken when using such metrics to test B-mode spectra and models, although we show that any such problems can be mitigated by using only cleaned spectrum combinations when computing goodness-of-fit statistics.</jats:p>
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet