From molecular control to quantum technology with the dynamic Stark effect
Faraday Discussions 153 (2011) 321-342
Abstract:
The non-resonant dynamic Stark effect is a powerful and general way of manipulating ultrafast processes in atoms, molecules, and solids with exquisite precision. We discuss the physics behind this effect, and demonstrate its efficacy as a method of control in a variety of systems. These applications range from the control of molecular rotational dynamics to the manipulation of chemical reaction dynamics, and from the suppression of vacuum fluctuation effects in coherent preparation of matter, to the dynamic generation of bandwidth for storage of broadband quantum states of light. © 2011 The Royal Society of Chemistry.Vectorial phase retrieval for linear characterization of attosecond pulses
Physical Review Letters 107:13 (2011)
Abstract:
The waveforms of attosecond pulses produced by high-harmonic generation carry information on the electronic structure and dynamics in atomic and molecular systems. Current methods for the temporal characterization of such pulses have limited sensitivity and impose significant experimental complexity. We propose a new linear and all-optical method inspired by widely used multidimensional phase retrieval algorithms. Our new scheme is based on the spectral measurement of two attosecond sources and their interference. As an example, we focus on the case of spectral polarization measurements of attosecond pulses, relying on their most fundamental property-being well confined in time. We demonstrate this method numerically by reconstructing the temporal profiles of attosecond pulses generated from aligned CO2 molecules. © 2011 American Physical Society.Real-World Quantum Sensors: Evaluating Resources for Precision Measurement
Physical Review Letters 107 (2011) 113603-113603
Single-photon-level quantum memory at room temperature.
Phys Rev Lett 107:5 (2011) 053603
Abstract:
Room-temperature, easy-to-operate quantum memories are essential building blocks for future long distance quantum information networks operating on an intercontinental scale, because devices like quantum repeaters, based on quantum memories, will have to be deployed in potentially remote, inaccessible locations. Here we demonstrate controllable, broadband and efficient storage and retrieval of weak coherent light pulses at the single-photon level in warm atomic cesium vapor using the robust far off-resonant Raman memory scheme. We show that the unconditional noise floor of this technically simple quantum memory is low enough to operate in the quantum regime, even in a room-temperature environment.On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing
ArXiv 1107.5557 (2011)