Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Ian Walmsley

Visiting Professor

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
  • About
  • Publications

Towards high-speed optical quantum memories

Nature Photonics 4:4 (2010) 218-221

Authors:

KF Reim, J Nunn, VO Lorenz, BJ Sussman, KC Lee, NK Langford, D Jaksch, IA Walmsley

Abstract:

Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers1 and quantum communications2. To date, quantum memories3-6 have operated with bandwidths that limit data rates to megahertz. Here we report the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1GHz in caesium vapour. The novel memory interaction takes place through a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field7,8. This should allow data rates more than 100 times greater than those of existing quantum memories. The memory works with a total efficiency of 15%, and its coherence is demonstrated through direct interference of the stored and retrieved pulses. Coherence times in hot atomic vapours are on the order of microseconds, the expected storage time limit for this memory. © 2010 Macmillan Publishers Limited. All rights reserved.
More details from the publisher
More details

Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors

New Journal of Physics 12 (2010)

Authors:

G Puentes, A Datta, A Feito, J Eisert, MB Plenio, IA Walmsley

Abstract:

The certificate of success for a number of important quantum information processing protocols, such as entanglement distillation, is based on the difference in the entanglement content of the system quantum states before and after the protocol. In such cases, effective bounds need to be placed on the entanglement of non-local states consistent with statistics obtained from local measurements. In this paper, we study numerically the ability of a hybrid homodyne detector that combines phase sensitivity and photon-number resolution to set accurate bounds on the entanglement content of two-mode quadrature squeezed states without the need for full state tomography. We show that it is possible to set tight lower bounds on the entanglement of a family of two-mode degaussified states using only a few measurements. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Coherent optical memory with GHz bandwidth

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)

Authors:

KF Reim, J Nunn, VO Lorenz, BJ Sussman, KC Lee, NK Langford, D Jaksch, IA Walmsley

Abstract:

We demonstrate the coherent storage and retrieval of sub-nanosecond low-intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor, using the novel, far offresonant two-photon Raman memory protocol. © 2010 Optical Society of America.
More details from the publisher
More details

Optimal experiment design for minimal tomography

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)

Authors:

J Nunn, BJ Smith, G Puentes, JS Lundeen, IA Walmsley

Abstract:

Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? We show how to calculate the optimal design explicitly. © 2010 Optical Society of America.
More details from the publisher
More details

Phase-controlled photonic quantum circuits in laser written integrated optics

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)

Authors:

N Thomas-Peter, BJ Smith, D Kundys, PGR Smith, IA Walmsley

Abstract:

We present a direct UV-written integrated photonic circuit with on-chip phase control through a thermo-optic phase shifter. An arbitrary beam splitter and a two-photon NOON state are demonstrated with high visibility interference. © 2010 Optical Society of America.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet