Conditional preparation of single photons using parametric downconversion: A recipe for purity
New Journal of Physics 10 (2008)
Abstract:
In an experiment reported recently (Mosley et al 2008 Phys. Rev. Lett. 100 133601), we demonstrated that, through group velocity matched parametric downconversion, heralded single photons can be generated in pure quantum states without spectral filtering. The technique relies on factorable photon pair production, initially developed theoretically in the strict collinear regime; focusing-required in any experimental implementation-can ruin this factorability. Here, we present the numerical model used to design our single photon sources and minimize spectral correlations in the light of such experimental considerations. Furthermore, we show that the results of our model are in good agreement with measurements made on the photon pairs and give a detailed description of the exact requirements for constructing this type of source. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.Efficient spatially resolved multimode quantum memory
Physical Review A - Atomic, Molecular, and Optical Physics 78:3 (2008)
Abstract:
Light storage in atomic ensembles has been implemented successfully, but the retrieval efficiency can be low. We propose to improve this efficiency with appropriately phase-matched backward propagating retrieval. This method allows for easy spatial filtering of the retrieved light; in addition, multiple optical modes can be stored in the transverse momentum of the ensemble. We model walk-off effects with a full numerical simulation, and confirm the applicability of the scheme. © 2008 The American Physical Society.Coherent control of decoherence.
Science 320:5876 (2008) 638-643
Abstract:
Manipulation of quantum interference requires that the system under control remains coherent, avoiding (or at least postponing) the phase randomization that can ensue from coupling to an uncontrolled environment. We show that closed-loop coherent control can be used to mitigate the rate of quantum dephasing in a gas-phase ensemble of potassium dimers (K2), which acts as a model system for testing the general concepts of controlling decoherence. Specifically, we adaptively shaped the light pulse used to prepare a vibrational wave packet in electronically excited K2, with the amplitude of quantum beats in the fluorescence signal used as an easily measured surrogate for the purpose of optimizing coherence. The optimal pulse increased the beat amplitude from below the noise level to well above it, and thereby increased the coherence life time as compared with the beats produced by a transform-limited pulse. Closed-loop methods can thus effectively identify states that are robust against dephasing without any previous information about the system-environment interaction.Heralded generation of ultrafast single photons in pure quantum States.
Phys Rev Lett 100:13 (2008) 133601
Abstract:
We present an experimental demonstration of heralded single photons prepared in pure quantum states from a parametric down-conversion source. It is shown that, through controlling the modal structure of the photon pair emission, one can generate pairs in factorable states and thence eliminate the need for spectral filters in multiple-source interference schemes. Indistinguishable heralded photons were generated in two independent spectrally engineered sources and Hong-Ou-Mandel interference observed between them without spectral filters. The measured visibility of 94.4% sets a minimum bound on the mean photon purity.Secure quantum key distribution using continuous variables of single photons.
Phys Rev Lett 100:11 (2008) 110504