Multiparticle Interference of Pairwise Distinguishable Photons.
Physical review letters 125:12 (2020) 123603
Abstract:
One of the central principles of quantum mechanics is that if there are multiple paths that lead to the same event and there is no way to distinguish between them, interference occurs. It is often assumed that distinguishing information in the preparation, evolution, or measurement of a system is sufficient to destroy interference. However, it is still possible for photons in distinguishable, separable states to interfere due to the indistinguishability of paths corresponding to possible exchange processes. Here we experimentally measure an interference signal that depends only on the multiparticle interference of four photons in a four-port interferometer despite pairs of them occupying distinguishable states.Drive-noise tolerant optical switching inspired by composite pulses
Optics Express Optical Society 28:6 (2020) 8646
Abstract:
Electro-optic modulators within Mach–Zehnder interferometers are a common construction for optical switches in integrated photonics. A challenge faced when operating at high switching speeds is that noise from the electronic drive signals will effect switching performance. Inspired by the Mach–Zehnder lattice switching devices of Van Campenhout et al. [Opt. Express 17(26), 23793 (2009).] and techniques from the field of Nuclear Magnetic Resonance known as composite pulses, we present switches which offer protection against drive-noise in both the on and off state of the switch for both the phase and intensity information encoded in the switched optical mode.A hybrid quantum memory-enabled network at room temperature.
Science advances 6:6 (2020) eaax1425
Abstract:
Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are different from those envisioned for local processing. We present the first hybrid quantum memory-enabled network by demonstrating the interconnection and simultaneous operation of two types of quantum memory: an atomic ensemble-based memory and an all-optical Loop memory. Interfacing the quantum memories at room temperature, we observe a well-preserved quantum correlation and a violation of Cauchy-Schwarz inequality. Furthermore, we demonstrate the creation and storage of a fully-operable heralded photon chain state that can achieve memory-built-in combining, swapping, splitting, tuning, and chopping single photons in a chain temporally. Such a quantum network allows atomic excitations to be generated, stored, and converted to broadband photons, which are then transferred to the next node, stored, and faithfully retrieved, all at high speed and in a programmable fashion.Spectrally pure single photons at telecommunications wavelengths using commercial birefringent optical fiber.
Optics express 28:4 (2020) 5147-5163
Abstract:
We report a bright and tunable source of spectrally pure heralded single photons in the telecom O-Band, based on cross-polarized four wave mixing in a commercial birefringent optical fiber. The source can achieve a purity of 85%, heralding efficiency of 30% and a coincidence-to-accidentals ratio of 108. Furthermore, through the measurements of joint spectral intensities, we find that the fiber is homogeneous over at least 45 centimeters and thus can potentially realize 4 sources that can produce identical quantum states of light. This paves the way for a cost-effective fiber-optic approach to implement multi-photon quantum optics experiments.Detector-agnostic phase-space distributions
Physical Review Letters American Physical Society 124:1 (2020) 013605