Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Ian Walmsley

Visiting Professor

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
  • About
  • Publications

Multiparticle Interference of Pairwise Distinguishable Photons.

Physical review letters 125:12 (2020) 123603

Authors:

Alex E Jones, Adrian J Menssen, Helen M Chrzanowski, Tom AW Wolterink, Valery S Shchesnovich, Ian A Walmsley

Abstract:

One of the central principles of quantum mechanics is that if there are multiple paths that lead to the same event and there is no way to distinguish between them, interference occurs. It is often assumed that distinguishing information in the preparation, evolution, or measurement of a system is sufficient to destroy interference. However, it is still possible for photons in distinguishable, separable states to interfere due to the indistinguishability of paths corresponding to possible exchange processes. Here we experimentally measure an interference signal that depends only on the multiparticle interference of four photons in a four-port interferometer despite pairs of them occupying distinguishable states.
More details from the publisher
More details
More details

Drive-noise tolerant optical switching inspired by composite pulses

Optics Express Optical Society 28:6 (2020) 8646

Authors:

Jacob Bulmer, Jonathan Jones, Ian Walmsley

Abstract:

Electro-optic modulators within Mach–Zehnder interferometers are a common construction for optical switches in integrated photonics. A challenge faced when operating at high switching speeds is that noise from the electronic drive signals will effect switching performance. Inspired by the Mach–Zehnder lattice switching devices of Van Campenhout et al. [Opt. Express 17(26), 23793 (2009).] and techniques from the field of Nuclear Magnetic Resonance known as composite pulses, we present switches which offer protection against drive-noise in both the on and off state of the switch for both the phase and intensity information encoded in the switched optical mode.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

A hybrid quantum memory-enabled network at room temperature.

Science advances 6:6 (2020) eaax1425

Authors:

Xiao-Ling Pang, Ai-Lin Yang, Jian-Peng Dou, Hang Li, Chao-Ni Zhang, Eilon Poem, Dylan J Saunders, Hao Tang, Joshua Nunn, Ian A Walmsley, Xian-Min Jin

Abstract:

Quantum memory capable of storage and retrieval of flying photons on demand is crucial for developing quantum information technologies. However, the devices needed for long-distance links are different from those envisioned for local processing. We present the first hybrid quantum memory-enabled network by demonstrating the interconnection and simultaneous operation of two types of quantum memory: an atomic ensemble-based memory and an all-optical Loop memory. Interfacing the quantum memories at room temperature, we observe a well-preserved quantum correlation and a violation of Cauchy-Schwarz inequality. Furthermore, we demonstrate the creation and storage of a fully-operable heralded photon chain state that can achieve memory-built-in combining, swapping, splitting, tuning, and chopping single photons in a chain temporally. Such a quantum network allows atomic excitations to be generated, stored, and converted to broadband photons, which are then transferred to the next node, stored, and faithfully retrieved, all at high speed and in a programmable fashion.
More details from the publisher
More details
More details

Spectrally pure single photons at telecommunications wavelengths using commercial birefringent optical fiber.

Optics express 28:4 (2020) 5147-5163

Authors:

Jasleen Lugani, Robert JA Francis-Jones, Joelle Boutari, Ian A Walmsley

Abstract:

We report a bright and tunable source of spectrally pure heralded single photons in the telecom O-Band, based on cross-polarized four wave mixing in a commercial birefringent optical fiber. The source can achieve a purity of 85%, heralding efficiency of 30% and a coincidence-to-accidentals ratio of 108. Furthermore, through the measurements of joint spectral intensities, we find that the fiber is homogeneous over at least 45 centimeters and thus can potentially realize 4 sources that can produce identical quantum states of light. This paves the way for a cost-effective fiber-optic approach to implement multi-photon quantum optics experiments.
More details from the publisher
More details
More details
Details from ArXiV

Detector-agnostic phase-space distributions

Physical Review Letters American Physical Society 124:1 (2020) 013605

Authors:

J Sperling, David Phillips, JFF Bulmer, GS Thekkadath, A Eckstein, TAW Wolterink, J Lugani, SW Nam, A Lita, T Gerrits, W Vogel, GS Agarwal, C Silberhorn, IA Walmsley

Abstract:

The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet