Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond.
Physical review letters 124:2 (2020) 023602
Abstract:
Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.Optimal coherent filtering for single noisy photons
Physical Review Letters American Physical Society 123:21 (2019) 213604
Abstract:
We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes as well as interconvert them and change their frequency. We theoretically show that such quantum buffers optimally filter out temporal-spectral noise, producing identical single photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots. Based on these experiments, simulations show that our buffer can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability.Testing multi-photon interference on a silicon chip
Optics Express Optical Society of America 27:24 (2019) 35646-35658
8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides.
Optics express 27:19 (2019) 26842-26857
Abstract:
The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8×8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform. We validate a variety of photonic quantum information processing primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anti-coalescence and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate the promising future for large-scale photonic quantum information processing using low-loss silicon nitride.Quantum interference enables constant-time quantum information processing.
Science advances 5:7 (2019) eaau9674