Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Optically induced lattice dynamics probed with ultrafast x-ray diffraction

Physical Review B - Condensed Matter and Materials Physics 77:13 (2008)

Authors:

HJ Lee, J Workman, JS Wark, RD Averitt, AJ Taylor, J Roberts, Q McCulloch, DE Hof, N Hur, SW Cheong, DJ Funk

Abstract:

We have studied the picosecond lattice dynamics of optically pumped hexagonal LuMnO3 by using ultrafast x-ray diffraction. The results show a shift and broadening of the diffraction curve due to the stimulated lattice expansion. To understand the transient response of the lattice, the measured time- and angle-resolved diffraction curves are compared to a theoretical calculation based on the dynamical diffraction theory of coherent phonon propagation modified for the hexagonal crystal structure of LuMnO3. Our simulations reveal that a large coupling coefficient (c13) between the a-b plane and the c axis is required to fit the data. Though we interpret the transient response within the framework of thermal coherent phonons, we do not exclude the possibility of strong nonthermal coupling of the electronic excitation to the atomic framework. We compare this result to our previous coherent phonon studies of LuMnO3 in which we used optical pump-probe spectroscopy. © 2008 The American Physical Society.
More details from the publisher
More details

Escape factors in zero-dimensional radiation-transfer codes

High Energy Density Physics 4:1-2 (2008) 18-25

Authors:

GJ Phillips, JS Wark, FM Kerr, SJ Rose, RW Lee

Abstract:

Several zero-dimensional non-LTE radiation-transfer codes are in common use within the laser-plasma community (for example, RATION, FLY, FLYCHK and GALAXY). These codes are capable of generating calculated emission spectra for a plasma of given density and temperature in the presence of a radiation field. Although dimensionless in nature, these codes can take into account the coupling of radiation and populations by use of the escape factor method, and in this sense the codes incorporate the finite size of the plasma of interest in two ways - firstly in the calculation of the effect of the radiation on the populations and secondly when using these populations to generate a spectrum. Different lengths can be used within these two distinct operations, though it has not been made clear what these lengths should be. We submit that the appropriate length to use for the calculation of populations in such zero-dimensional codes is the mean chord of the system, whilst when calculating the spectrum the appropriate length is the size of the plasma along the line of sight. Indeed, for specific plasma shapes using the appropriate escape factors it can be shown that this interpretation agrees with analytic results. However, this is only the case if the correct escape factor is employed: use of the Holstein escape factor (which is in widely distributed versions of the codes mentioned above) is found to be significantly in error under most conditions. We also note that for the case where a plasma is close to coronal equilibrium, some limited information concerning the shape of the plasma can be extracted merely from the ratio of optically thick to optically thin lines, without the need for any explicit spatial resolution. © 2007 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Line intensity enhancements in stellar coronal X-ray spectra due to opacity effects

(2008)

Authors:

SJ Rose, M Matranga, M Mathioudakis, FP Keenan, JS Wark
More details from the publisher

Deformation Substructures and Their Transitions in Laser Shock–Compressed Copper-Aluminum Alloys

Metallurgical and Materials Transactions A Springer Nature 39:2 (2008) 304-321

Authors:

MA Meyers, MS Schneider, H Jarmakani, B Kad, BA Remington, DH Kalantar, J McNaney, B Cao, J Wark
More details from the publisher

High-pressure nanocrystalline structure of a shock-compressed single crystal of iron

PHYSICAL REVIEW B 78:22 (2008) ARTN 220101

Authors:

James A Hawreliak, Daniel H Kalantar, James S Stoelken, Bruce A Remington, Hector E Lorenzana, Justin S Wark
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet