Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Observations of the Rayleigh-Taylor instability in laser imploded microballoons

Applied Physics Letters 48 (1986) 15
More details from the publisher

Studies of x-ray switching and shuttering techniques

Review of Scientific Instruments 57 (1986) 8
More details from the publisher

Time-Resolved X-Ray Diagnostics for High Density Plasma Physics Studies

Chapter in Laser Interaction and Related Plasma Phenomena, Springer Nature (1986) 179-211

Authors:

MC Richardson, GG Gregory, RL Keck, SA Letzring, RS Marjoribanks, FJ Marshall, G Pien, JS Wark, B Yaakobi, PD Goldstone, A Hauer, GS Stradling, F Ameduri, BL Henke, PA Jaanimagi
More details from the publisher

Ab-initio simulations and measurements of the free-free opacity in Aluminum

Authors:

P Hollebon, O Ciricosta, MP Desjarlais, C Cacho, C Spindloe, E Springate, ICE Turcu, JUSTIN Wark, SM Vinko

Abstract:

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of x-ray to ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, and find good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
More details from the publisher
More details
More details
Details from ArXiV
More details

Driving Iron plasmas to stellar core conditions using extreme x-ray radiation

Authors:

Hae Ja Lee, Sam Vinko, Oliver Humphries, Eric Galtier, Ryan Royle, Muhammad Kasim, Shenyuan Ren, Roberto Alonso-Mori, Phillip Heimann, Mengning Liang, Matt Seaberg, Sébastien Boutet, Andrew A Aquila, Shaughnessy Brown, Akel Hashim, Mikako Makita, Christian David, Gediminas Seniutinas, Hyun-Kyung Chung, Gilliss Dyer, Justin Wark, Bob Nagler
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 81
  • Page 82
  • Page 83
  • Page 84
  • Page 85
  • Page 86
  • Page 87
  • Current page 88
  • Page 89
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet