Measurement of inclusive double-differential νμ charged-current cross section with improved acceptance in the T2K off-axis near detector
Physical Review D American Physical Society 98:1 (2018) 012004
Abstract:
We report a measurement of the flux-integrated cross section for inclusive muon neutrino chargedcurrent interactions on carbon. The double-differential measurements are given as a function of the muon momentum and angle. Relative to our previous publication on this topic, these results have an increased angular acceptance and higher statistics. The data sample presented here corresponds to 5.7 × 1020 protons on target. The total flux-integrated cross section is measured to be ð6.950 0.662Þ × 10−39 cm2 nucleon−1 and is consistent with our simulation.Search for CP violation in Neutrino and Antineutrino Oscillations by the T2K experiment with $2.2\times10^{21}$ protons on target
(2018)
Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at < E-v >=3 GeV
Physical Review Letters American Physical Society 121:2 (2018) 022504
Abstract:
Final-state kinematic imbalances are measured in mesonless production of νμ+A→μ-+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the μ - p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phase space where additional cross section strength is needed in current models, and demonstrates a new technique that would be suitable for use in fine-grained liquid argon detectors where the effect of the nucleus may be even larger.Physics potentials with the second Hyper-Kamiokande detector in Korea
Progress of Theoretical and Experimental Physics Oxford University Press 2018:6 (2018)
Abstract:
Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{\textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later stage. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are several candidate sites in Korea with baselines of 1,000$\sim$1,300~km and OAAs of 1$^{\textrm{o}}$$\sim$3$^{\textrm{o}}$. We conducted sensitivity studies on neutrino oscillation physics for a second detector, either in Japan (JD $\times$ 2) or Korea (JD + KD) and compared the results with a single detector in Japan. Leptonic CP violation sensitivity is improved especially when the CP is non-maximally violated. The larger matter effect at Korean candidate sites significantly enhances sensitivities to non-standard interactions of neutrinos and mass ordering determination. Current studies indicate the best sensitivity is obtained at Mt. Bisul (1,088~km baseline, $1.3^\circ$ OAA). Thanks to a larger (1,000~m) overburden than the first detector site, clear improvements to sensitivities for solar and supernova relic neutrino searches are expected.Search for boosted dark matter interacting with electrons in Super-Kamiokande
Physical Review Letters American Physical Society 120:22 (2018) 221301