Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at < E-v >=3 GeV
Physical Review Letters American Physical Society 121:2 (2018) 022504
Abstract:
Final-state kinematic imbalances are measured in mesonless production of νμ+A→μ-+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the μ - p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phase space where additional cross section strength is needed in current models, and demonstrates a new technique that would be suitable for use in fine-grained liquid argon detectors where the effect of the nucleus may be even larger.Physics potentials with the second Hyper-Kamiokande detector in Korea
Progress of Theoretical and Experimental Physics Oxford University Press 2018:6 (2018)
Abstract:
Hyper-Kamiokande consists of two identical water-Cherenkov detectors of total 520~kt with the first one in Japan at 295~km from the J-PARC neutrino beam with 2.5$^{\textrm{o}}$ Off-Axis Angles (OAAs), and the second one possibly in Korea in a later stage. Having the second detector in Korea would benefit almost all areas of neutrino oscillation physics mainly due to longer baselines. There are several candidate sites in Korea with baselines of 1,000$\sim$1,300~km and OAAs of 1$^{\textrm{o}}$$\sim$3$^{\textrm{o}}$. We conducted sensitivity studies on neutrino oscillation physics for a second detector, either in Japan (JD $\times$ 2) or Korea (JD + KD) and compared the results with a single detector in Japan. Leptonic CP violation sensitivity is improved especially when the CP is non-maximally violated. The larger matter effect at Korean candidate sites significantly enhances sensitivities to non-standard interactions of neutrinos and mass ordering determination. Current studies indicate the best sensitivity is obtained at Mt. Bisul (1,088~km baseline, $1.3^\circ$ OAA). Thanks to a larger (1,000~m) overburden than the first detector site, clear improvements to sensitivities for solar and supernova relic neutrino searches are expected.Search for boosted dark matter interacting with electrons in Super-Kamiokande
Physical Review Letters American Physical Society 120:22 (2018) 221301
Abstract:
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at $\langle E_\nu\rangle=3$ GeV
(2018)
Search for neutrinos in super-kamiokande associated with the GW170817 neutron-star merger
Astrophysical Journal Letters American Astronomical Society 857:1 (2018) 1-6