Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Beyond skill scores: exploring sub-seasonal forecast value through a case study of French month-ahead energy prediction

(2020)

Authors:

Joshua Dorrington, Isla Finney, Tim Palmer, Antje Weisheimer
More details from the publisher

Optimising the use of ensemble information in numerical weather forecasts of wind power generation

Environmental Research Letters IOP Publishing 14:12 (2019) 124086-124086

Authors:

J Stanger, I Finney, A Weisheimer, T Palmer
More details from the publisher
Details from ORA
More details

Revisiting the Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic Sector

(2019)

Authors:

Swinda KJ Falkena, Jana de Wiljes, Antje Weisheimer, Theodore G Shepherd
More details from the publisher

An interdecadal shift of the extratropical teleconnection from the tropical Pacific during boreal summer

Geophysical Research Letters American Geophysical Union 46:22 (2019) 13379-13388

Authors:

Christopher O'Reilly, T Woollings, L Zanna, A Weisheimer

Abstract:

The extratropical teleconnection from the tropical Pacific in boreal summer exhibits a significant shift over the past 70 years. Cyclonic circulation anomalies over the North Atlantic and Eurasia associated with El Niño in the later period (1978‐2014) are absent in the earlier period (1948‐1977). An initialised atmospheric model ensemble, performed with prescribed sea surface temperature (SST) boundary conditions, replicates some key features of the shift in the teleconnection, providing clear evidence that this shift is not simply due to internal atmospheric variability or random sampling. Additional ensemble simulations, one with detrended tropical SSTs and another with constant external forcing are analysed. In the model, the teleconnection shift is associated with climatological atmospheric circulation changes, which are substantially reduced in the simulation with detrended tropical SSTs. These results demonstrate that the climatological atmospheric circulation and associated teleconnection changes are largely forced by tropical SST trends.
More details from the publisher
Details from ORA
More details

Seasonal predictability of the winter North Atlantic Oscillation from a jet stream perspective

Geophysical Research Letters Wiley 46:16 (2019) 10159-10167

Authors:

Tess Parker, Tim Woollings, Antje Weisheimer, Chris O'Reilly, L Baker, L Shaffrey

Abstract:

The winter North Atlantic Oscillation (NAO) has varied on interannual and decadal timescales over the last century, associated with variations in the speed and latitude of the eddy driven jet stream. This paper uses hindcasts from two operational seasonal forecast sys tems (the European Centre for Medium-range Weather Forecasts (ECMWF)’s seasonal forecast system, and the UK Met Office global seasonal forecast system) and a century long atmosphere-only experiment (using the ECMWF’s Integrated Forecasting System model) to relate seasonal prediction skill in the NAO to these aspects of jet variability. This shows that the NAO skill realised so far arises from interannual variations in the jet, largely associated with its latitude rather than speed. There likely remains further potential for predictability on longer, decadal timescales. In the small sample of mod els analysed here, improved representation of the structure of jet variability does not trans late to enhanced seasonal forecast skill.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet