Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Stochastic parameterization: Towards a new view of weather and climate models

Bulletin of the American Meteorological Society American Meteorological Society 98:3 (2017) 565-588

Authors:

Judith Berner, Ulrich Achatz, Lauriane Batté, Lisa Bengtsson, Alvaro De la Cámara, Hannah M Christensen, Matteo Colangeli, Danielle RB Coleman, Daan Crommelin, Stamen I Dolaptchiev, Christian LE Franzke, Petra Friederichs, Peter Imkeller, Heikki Järvinen, Stephan Juricke, Vassili Kitsios, Francois Lott, Valerio Lucarini, S Mahajan, Timothy N Palmer, Cécile Penland, Mirjana Sakradzija, Jin-Song Von Storch, Antje Weisheimer, Michael Weniger, Paul D Williams, Jun-Ichi Yano

Abstract:

The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.
More details from the publisher
Details from ORA
More details

Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model

Geoscientific Model Development Copernicus Publications 10:3 (2017) 1383-1402

Authors:

Paolo Davini, Jost von Hardenburg, Susanna Corti, Hannah M Christensen, Stephan Juricke, Aneesh Subramanian, Peter AG Watson, Antje Weisheimer, Tim N Palmer

Abstract:

The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on Super- MUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of postprocessed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with highresolution simulations) or stochastically (in low-resolution simulations).
More details from the publisher
Details from ORA
More details

Remote control of North Atlantic Oscillation predictability via the stratosphere

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 143:703 (2017) 706-719

Authors:

F Hansen, RJ Greatbatch, G Gollan, T Jung, A Weisheimer
More details from the publisher
Details from ORA
More details

Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution

Quarterly Journal of the Royal Meteorological Society Wiley 143:703 (2016) 917-926

Authors:

Antje Weisheimer, Nathalie Schaller, Christopher O'Reilly, David A Macleod, Timothy N Palmer

Abstract:

Based on skill estimates from hindcasts made over the last couple of decades, recent studies have suggested that considerable success has been achieved in forecasting winter climate anomalies over the Euro-Atlantic area using current-generation dynamical forecast models. However, previous-generation models had shown that forecasts of winter climate anomalies in the 1960s and 1970s were less successful than forecasts of the 1980s and 1990s. Given that the more recent decades have been dominated by the North Atlantic Oscillation (NAO) in its positive phase, it is important to know whether the performance of current models would be similarly skilful when tested over periods of a predominantly negative NAO. To this end, a new ensemble of atmospheric seasonal hindcasts covering the period 1900–2009 has been created, providing a unique tool to explore many aspects of atmospheric seasonal climate prediction. In this study we focus on two of these: multi-decadal variability in predicting the winter NAO, and the potential value of the long seasonal hindcast datasets for the emerging science of probabilistic event attribution. The existence of relatively low skill levels during the period 1950s–1970s has been confirmed in the new dataset. The skillof the NAO forecasts is larger, however, in earlier and later periods. Whilst these inter-decadal differences in skill are, by themselves, only marginally statistically significant, the variations in skill strongly co-vary with statistics of the general circulation itself suggesting that such differences are indeed physically based. The mid-century period of low forecast skill coincides with a negative NAO phase but the relationship between the NAO phase/amplitude and forecast skill is more complex than linear. Finally, we show how seasonal forecast reliability can be of importance for increasing confidence in statements of causes of extreme weather and climate events, including effects of anthropogenic climate change.
More details from the publisher
Details from ORA
More details
More details
More details

Impact of stochastic physics on tropical precipitation in the coupled ECMWF model

Quarterly Journal of the Royal Meteorological Society Wiley 143:703 (2016) 852-865

Authors:

Aneesh Subramanian, Antje Weisheimer, Tim Palmer, Frederic Vitart, Peter Bechtold

Abstract:

Uncertainties in parametrized processes in general circulation models can be represented as stochastic perturbations to the model formulation. The European Centre for Medium-Range Weather Forecasts (ECMWF) has pioneered approaches to represent these model errors in forecasting systems. In particular, the stochastically perturbed physical tendency (SPPT) scheme for the atmosphere is used in their operational ensemble system for medium- and long-range predictions. Recent studies have shown that these stochastic approaches can both increase the reliability of the probabilistic forecasts and reduce long-term mean biases of the model climate. Towards developing a seamless prediction system in the future, these benefits of stochastic parametrization for both short-term and long-term forecasts make it an essential component of the next generation Earth System models. We present results of the impact of different configurations of the SPPT scheme in ECMWF's seasonal forecasting System 4 on the mean and variability in tropical precipitation. Small-scale perturbations in the SPPT scheme play a significant role in reducing the mean biases in tropical precipitation. The stochastic physics also nonlinearly rectify the convection and precipitation during different phases of El Niño Southern Oscillation events and improve the reliability of the ensemble forecasts for the Madden–Julian Oscillation (MJO). They impact the MJO dynamics by modulating the convective and suppressed phases of the MJO. Finally, we discuss some of the caveats to this analysis and some future prospects.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet