Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Imogen Whittam

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
  • Rubin-LSST
  • Euclid
imogen.whittam@physics.ox.ac.uk
Denys Wilkinson Building, room 558
Personal website
  • About
  • Publications

The Radio Spectral Energy Distribution and Star Formation Calibration in MIGHTEE-COSMOS Highly Star-forming Galaxies at 1.5 < z < 3.5

The Astrophysical Journal American Astronomical Society 989:1 (2025) 44

Authors:

Fatemeh Tabatabaei, Maryam Khademi, Matt J Jarvis, Russ Taylor, Imogen H Whittam, Fangxia An, Reihaneh Javadi, Eric J Murphy, Mattia Vaccari

Abstract:

Studying the radio spectral energy distribution (SED) of distant galaxies is essential for understanding their assembly and evolution over cosmic time. We present rest-frame radio SEDs of a sample of 160 star-forming galaxies at 1.5 < z < 3.5 in the Cosmic Evolution Survey field as part of the MeerKAT International GHz Tiered Extragalactic Exploration project. MeerKAT observations combined with archival Very Large Array and Giant Metrewave Radio Telescope data allow us to determine the integrated mid-radio (ν = 1–10 GHz) continuum (MRC) luminosity and magnetic field strength. A Bayesian method is used to model the SEDs and to separate the free–free and synchrotron emission. We also calibrate the star formation rate (SFR) in radio both directly through SED analysis and indirectly through the infrared–radio correlation (IRRC). With a mean value of αnt ≃ 0.7, the synchrotron spectral index flattens with both redshift and specific SFR, indicating that cosmic rays are more energetic in the early Universe due to higher star formation activity. The magnetic field strength increases with redshift, B ∝ (1 + z)(0.7±0.1), and SFR as B ∝ SFR0.3, suggesting a small-scale dynamo acting as its main amplification mechanism. Taking into account the evolution of the SEDs, the IRRC is redshift invariant, and it does not change with stellar mass at 1.5 < z < 3.5, although the correlation deviates from linearity. Similarly, we show that the SFR traced using the integrated MRC luminosity is redshift invariant.
More details from the publisher
Details from ORA
More details

MIGHTEE: A first look at MIGHTEE quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1187

Authors:

Sarah V White, Ivan Delvecchio, Nathan Adams, Ian Heywood, Imogen H Whittam, Catherine L Hale, Neo Namane, Rebecca AA Bowler, Jordan D Collier

Abstract:

Abstract In this work we study a robust, Ks-band complete, spectroscopically-confirmed sample of 104 unobscured (Type-1) quasars within the COSMOS and XMM-LSS fields of the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, at 0.60 < zspec < 3.41. The quasars are selected via gJKs colour-space and, with 1.3-GHz flux-densities reaching rms ≈ 3.0 μ Jy beam−1, we find a radio-loudness fraction of 5percnt. Thanks to the deep, multiwavelength datasets that are available over these fields, the properties of radio-loud and radio-quiet quasars can be studied in a statistically-robust way, with the emphasis of this work being on the active-galactic-nuclei (AGN)-related and star-formation-related contributions to the total radio emission. We employ multiple star-formation-rate estimates for the analysis so that our results can be compared more-easily with others in the literature, and find that the fraction of sources that have their radio emission dominated by the AGN crucially depends on the SFR estimate that is derived from the radio luminosity. When redshift dependence is not taken into account, a larger fraction of sources is classed as having their radio emission dominated by the AGN. When redshift dependence is considered, a larger fraction of our sample is tentatively classed as ‘starbursts’. We also find that the fraction of (possible) starbursts increases with redshift, and provide multiple suggestions for this trend.
More details from the publisher

On the relationship between the cosmic web and the alignment of galaxies and AGN jets

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2362-2379

Authors:

S Lyla Jung, IH Whittam, MJ Jarvis, CL Hale, MN Tudorache, T Yasin

Abstract:

The impact of active galactic nuclei (AGNs) on the evolution of galaxies explains the steep decrease in the number density of the most massive galaxies in the Universe. However, the fuelling of the AGN and the efficiency of this feedback largely depend on their environment. We use data from the Low Frequency Array Two-metre Sky Survey Data Release 2 (DR2), the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys, and the Sloan Digital Sky Survey DR12 to make the first study of the orientations of radio jets and their optical counterpart in relation to the cosmic web environment. We find that close to filaments (), galaxies tend to have their optical major axes aligned with the nearest filaments. On the other hand, radio jets, which are generally aligned perpendicularly to the optical major axis of the host galaxy, show more randomized orientations with respect to host galaxies within of filaments. These results support the scenario that massive galaxies in cosmic filaments grow by numerous mergers directed along the orientation of the filaments while experiencing chaotic accretion of gas on to the central black hole. The AGN-driven jets consequently have a strong impact preferentially along the minor axes of dark matter haloes within filaments. We discuss the implications of these results for large-scale radio jet alignments, intrinsic alignments between galaxies, and the azimuthal anisotropy of the distribution of circumgalactic medium and anisotropic quenching.
More details from the publisher
Details from ORA
More details

The jet paths of radio active galactic nuclei and their cluster weather

Astronomy & Astrophysics EDP Sciences 695 (2025) a178

Authors:

E Vardoulaki, V Backöfer, A Finoguenov, F Vazza, J Comparat, G Gozaliasl, IH Whittam, CL Hale, JR Weaver, AM Koekemoer, JD Collier, B Frank, I Heywood, S Sekhar, AR Taylor, S Pinjarkar, MJ Hardcastle, T Shimwell, M Hoeft, SV White, F An, F Tabatabaei, Z Randriamanakoto, MD Filipovic
More details from the publisher
More details

MIGHTEE: Exploring the relationship between spectral index, redshift and radio luminosity

Monthly Notices of the Royal Astronomical Society (2025) staf209

Authors:

Siddhant Pinjarkar, Martin J Hardcastle, Dharam V Lal, Daniel JB Smith, José Afonso, Davi Barbosa, Catherine L Hale, Matt J Jarvis, Sthabile Kolwa, Eric Murphy, Mattia Vaccari, Imogen H Whittam
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet