MIGHTEE - H I. The relation between the H I gas in galaxies and the cosmic web
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:2 (2022) 2168-2177
Abstract:
We study the 3D axis of rotation (3D spin) of 77 Hi galaxies from the MIGHTEE-Hi Early Science observations, and its relation to the filaments of the cosmic web. For this Hi-selected sample, the alignment between the spin axis and the closest filament (|cos ψ|) is higher for galaxies closer to the filaments, with 〈|cos ψ|〉 = 0.66 ± 0.04 for galaxies <5 Mpc from their closest filament compared to 〈|cos ψ|〉 = 0.37 ± 0.08 for galaxies at 5 < d < 10 Mpc. We find that galaxies with a low Hi-to-stellar mass ratio (log10(MHi/M∗) < 0.11) are more aligned with their closest filaments, with 〈|cos ψ|〉 = 0.58 ± 0.04; whilst galaxies with (log10(MHi/M∗) > 0.11) tend to be mis-aligned, with 〈|cos ψ|〉 = 0.44 ± 0.04. We find tentative evidence that the spin axis of Hi-selected galaxies tend to be aligned with associated filaments (d < 10 Mpc), but this depends on the gas fractions. Galaxies that have accumulated more stellar mass compared to their gas mass tend towards stronger alignment. Our results suggest that those galaxies that have accrued high gas fraction with respect to their stellar mass may have had their spin axis alignment with the filament disrupted by a recent gas-rich merger, whereas the spin vector for those galaxies in which the neutral gas has not been strongly replenished through a recent merger tend to orientate towards alignment with the filament. We also investigate the spin transition between galaxies with a high Hi content and a low Hi content at a threshold of MHI ≈ 109.5 M⊙ found in simulations; however, we find no evidence for such a transition with the current data.MIGHTEE-HI: The relation between the HI gas in galaxies and the cosmic web
(2022)
Deep Extragalactic VIsible Legacy Survey (DEVILS): identification of AGN through SED fitting and the evolution of the bolometric AGN luminosity function
Monthly Notices of the Royal Astronomical Society Oxford University Press 509:4 (2021) 4940-4961
Abstract:
Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy’s spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code PROSPECT with an incorporated AGN component, we fit the far-ultraviolet to far-infrared SEDs of ∼494 000 galaxies in the D10-COSMOS field and ∼230 000 galaxies from the GAMA survey. By combining an AGN component with a flexible star formation and metallicity implementation, we obtain estimates for the AGN luminosities, stellar masses, star formation histories, and metallicity histories for each of our galaxies. We find that PROSPECT can identify AGN components in 91 per cent of galaxies pre-selected as containing AGN through narrow-emission line ratios and the presence of broad lines. Our PROSPECT-derived AGN luminosities show close agreement with luminosities derived for X-ray selected AGN using both the X-ray flux and previous SED fitting results. We show that incorporating the flexibility of an AGN component when fitting the SEDs of galaxies with no AGN has no significant impact on the derived galaxy properties. However, in order to obtain accurate estimates of the stellar properties of AGN host galaxies, it is crucial to include an AGN component in the SED fitting process. We use our derived AGN luminosities to map the evolution of the AGN luminosity function for 0 < z < 2 and find good agreement with previous measurements and predictions from theoretical models.Deep Extragalactic VIsible Legacy Survey (DEVILS): Identification of AGN through SED Fitting and the Evolution of the Bolometric AGN Luminosity Function
ArXiv 2112.06366 (2021)