Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Imogen Whittam

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
  • Rubin-LSST
  • Euclid
imogen.whittam@physics.ox.ac.uk
Denys Wilkinson Building, room 558
Personal website
  • About
  • Publications

MIGHTEE-HI: The relation between the HI gas in galaxies and the cosmic web

(2022)

Authors:

Madalina N Tudorache, MJ Jarvis, I Heywood, AA Ponomareva, N Maddox, BS Frank, NJ Adams, RAA Bowler, IH Whittam, M Baes, H Pan, SHA Rajohnson, F Sinigaglia, K Spekkens
More details from the publisher
Details from ArXiV

Deep Extragalactic VIsible Legacy Survey (DEVILS): identification of AGN through SED fitting and the evolution of the bolometric AGN luminosity function

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:4 (2021) 4940-4961

Authors:

Jessica E Thorne, Aaron SG Robotham, Luke JM Davies, Sabine Bellstedt, Michael JI Brown, Scott M Croom, Ivan Delvecchio, Brent Groves, Matt J Jarvis, Stanislav S Shabala, Nick Seymour, Imogen H Whittam, Matias Bravo, Robin HW Cook, Simon P Driver, Benne Holwerda, Steven Phillipps, Malgorzata Siudek

Abstract:

Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy’s spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code PROSPECT with an incorporated AGN component, we fit the far-ultraviolet to far-infrared SEDs of ∼494 000 galaxies in the D10-COSMOS field and ∼230 000 galaxies from the GAMA survey. By combining an AGN component with a flexible star formation and metallicity implementation, we obtain estimates for the AGN luminosities, stellar masses, star formation histories, and metallicity histories for each of our galaxies. We find that PROSPECT can identify AGN components in 91 per cent of galaxies pre-selected as containing AGN through narrow-emission line ratios and the presence of broad lines. Our PROSPECT-derived AGN luminosities show close agreement with luminosities derived for X-ray selected AGN using both the X-ray flux and previous SED fitting results. We show that incorporating the flexibility of an AGN component when fitting the SEDs of galaxies with no AGN has no significant impact on the derived galaxy properties. However, in order to obtain accurate estimates of the stellar properties of AGN host galaxies, it is crucial to include an AGN component in the SED fitting process. We use our derived AGN luminosities to map the evolution of the AGN luminosity function for 0 < z < 2 and find good agreement with previous measurements and predictions from theoretical models.
More details from the publisher
Details from ORA
More details
More details

Deep Extragalactic VIsible Legacy Survey (DEVILS): Identification of AGN through SED Fitting and the Evolution of the Bolometric AGN Luminosity Function

ArXiv 2112.06366 (2021)

Authors:

Jessica E Thorne, Aaron SG Robotham, Luke JM Davies, Sabine Bellstedt, Michael JI Brown, Scott M Croom, Ivan Delvecchio, Brent Groves, Matt J Jarvis, Stanislav S Shabala, Nick Seymour, Imogen H Whittam, Matias Bravo, Robin HW Cook, Simon P Driver, Benne Holwerda, Steven Phillipps, Malgorzata Siudek
Details from ArXiV

MIGHTEE: total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:2 (2021) 2150-2168

Authors:

I Heywood, Mj Jarvis, Cl Hale, Ih Whittam, Hl Bester, B Hugo, Js Kenyon, M Prescott, Om Smirnov, C Tasse, Jm Afonso, Pn Best, Jd Collier, Rp Deane, Bs Frank, Mj Hardcastle, K Knowles, N Maddox, Ej Murphy, I Prandoni, Sm Randriamampandry, Mg Santos, S Sekhar, F Tabatabaei, Ar Taylor, K Thorat

Abstract:

MIGHTEE is a galaxy evolution survey using siltaneous radio continuum, spectropolarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image 20 deg2 over the COSMOS, E-CDFS, ELAIS-S1, and XMM-Newton Large Scale Structure field (XMM-LSS) extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive ltiwavelength data sets from numerous existing and forthcoming observational campaigns. Here, we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg2) and a three-pointing mosaic in XMM-LSS (3.5 deg2). The processing includes the correction of direction-dependent effects, and results in theal noise levels below 2 ${}$Jy beam-1 in both fields, limited in the central regions by classical confusion at 8 arcsec angular resolution, and meeting the survey specifications. We also produce images at 5 arcsec resolution that are 3 times shallower. The resulting image products fo the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9896 and 20 274 radio components in COSMOS and XMM-LSS, respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broad-band radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide-field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.
More details from the publisher
Details from ORA
More details

MIGHTEE: total intensity radio continuum imaging and the COSMOS / XMM-LSS Early Science fields

ArXiv 2110.00347 (2021)

Authors:

I Heywood, MJ Jarvis, CL Hale, IH Whittam, HL Bester, B Hugo, JS Kenyon, M Prescott, OM Smirnov, C Tasse, JM Afonso, PN Best, JD Collier, RP Deane, BS Frank, MJ Hardcastle, K Knowles, N Maddox, EJ Murphy, I Prandoni, SM Randriamampandry, MG Santos, S Sekhar, F Tabatabaei, AR Taylor, K Thorat
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet