Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Imogen Whittam

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Euclid
imogen.whittam@physics.ox.ac.uk
Denys Wilkinson Building, room 558
Personal website
  • About
  • Publications

The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 497:2 (2020) 2163-2174

Authors:

T Pasini, M Brueggen, F de Gasperin, L Birzan, E O'Sullivan, A Finoguenov, Imogen Whittam, Ian Heywood, Matt Jarvis, M Gitti, F Brighenti, Jd Collier, G Gozaliasl

Abstract:

Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The faint radio source population at 15.7 GHz – IV. The dominance of core emission in faint radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2841-2853

Authors:

Imogen Whittam, DA Green, Matthew Jarvis, JM Riley

Abstract:

We present 15-GHz Karl G. Jansky Very Large Array observations of a complete sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C) survey. 67 out of the 95 sources (71 per cent) are unresolved in the new observations and lower frequency radio observations, placing an upper limit on their angular size of ∼2 arcsec. Thus, compact radio galaxies, or radio galaxies with very faint jets, are the dominant population in the 10C survey. This provides support for the suggestion in our previous work that low-luminosity (⁠L<1025W~Hz−1⁠) radio galaxies are core dominated, although higher resolution observations are required to confirm this directly. The 10C sample of compact, high-frequency selected radio galaxies is a mixture of high-excitation and low-excitation radio galaxies and displays a range of radio spectral shapes, demonstrating that they are a mixed population of objects.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Understanding mechanical feedback from HERGs and LERGs

ArXiv 1810.06899 (2018)
Details from ArXiV

Understanding mechanical feedback from HERGs and LERGs

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 14:A30 (2018) 86-89
More details from the publisher

The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: multiwavelength counterparts

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 707-721

Authors:

M Prescott, IH Whittam, Matthew Jarvis, K McAlpine, LL Richter, S Fine, T Mauch, Ian Heywood, M Vaccari

Abstract:

Published by Oxford University Press on behalf of the Royal Astronomical Society. We have combined spectroscopic and photometric data from the Sloan Digital Sky Survey with 1.4 GHz radio observations, conducted as part of the Stripe 82 1-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array, which covers ~100 sq deg, to a flux limit of 88 μJy rms. Cross-matching the 11 768 radio source components with optical data via visual inspection results in a final sample of 4794 cross-matched objects, of which 1996 have spectroscopic redshifts and 2798 objects have photometric redshifts. Three previously undiscovered giant radio galaxies were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy, we separate radio-loud active galactic nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the high and low excitation radio galaxy (HERG and LERG) populations. A control-matched sample of HERGs and LERGs, matched on stellar mass, redshift, and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K - z relationship. These results imply the LERG populations are hosted by population ofmassive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, quasars, and SFGs in our sample all reside in different regions of aWide-field Infrared Survey Explorer colour-colour diagram. This cross-matched sample bridges the gap between previous 'wide but shallow' and 'deep but narrow' samples and will be useful for a number of future investigations.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet