Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Imogen Whittam

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
  • Rubin-LSST
  • Euclid
imogen.whittam@physics.ox.ac.uk
Denys Wilkinson Building, room 558
Personal website
  • About
  • Publications

The MeerKAT International GHz tiered Extragalactic Exploration (MIGHTEE) survey

Proceedings of Science Proceedings of Science (2016)

Authors:

Matthew Jarvis, AR Taylor, I Agudo, RP Deane, B Frank, N Gupta, Ian Heywood, N Maddox, K McAlpine, AMM Scaife, M Vaccari, JTL Zwart, E Adams, DJ Bacon, AJ Baker, BA Bassett, PN Best, R Beswick, S Blyth, ML Brown, M Bruggen, M Cluver, S Colafranceso, Grant Cotter, C Cress, R Dave, C Ferrari, MJ Hardcastle, Catherine Hale, I Harrison, PW Hatfield, H-R Klockner, S Kolwa, E Malefahlo, T Marubini, T Mauch, K Moodley, R Morganti, R Norris, Josephine Peters, I Prandoni, M Prescott, S Oliver, N Oozeer, HJA Rottgering, N Seymour, C Simpson, O Smirnov

Abstract:

The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to $\mu$Jy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ~1 square degree MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.
Details from ORA
Details from ArXiV

The MeerKAT international GHz tiered extragalactic exploration (MIGHTEE) survey

Proceedings of Science (2016)

Authors:

MJ Jarvis, AR Taylor, I Agudo, JR Allison, RP Deane, B Frank, N Gupta, I Heywood, N Maddox, K McAlpine, MG Santos, AMM Scaife, M Vaccari, JTL Zwart, E Adams, DJ Bacon, AJ Baker, BA Bassett, PN Best, R Beswick, S Blyth, ML Brown, M Brüggen, M Cluver, S Colafranceso, G Cotter, C Cress, R Davé, C Ferrari, MJ Hardcastle, C Hale, I Harrison, PW Hatfield, HR Klöckner, S Kolwa, E Malefahlo, T Marubini, T Mauch, K Moodley, R Morganti, R Norris, JA Peters, I Prandoni, M Prescott, S Oliver, N Oozeer, HJA Röttgering, N Seymour, C Simpson, O Smirnov, DJB Smith, K Spekkens, J Stil, C Tasse, K van der Heyden, IH Whittam, WL WIlliams

Abstract:

The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to µJy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ∼1 deg2 MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.

Exploring the faint source population at 15.7 GHz

Proceedings of Science International School for Advanced Studies (Trieste) (2015)

Authors:

Imogen H Whittam, Julia M Riley, David A Green, Matthew Jarvis

Abstract:

We discuss our current understanding of the nature of the faint, high-frequency radio sky. The Tenth Cambridge (10C) survey at 15.7 GHz is the deepest high-frequency radio survey to date, covering 12 square degrees to a completeness limit of 0.5 mJy, making it the ideal starting point from which to study this population. In this work we have matched the 10C survey to several lower-frequency radio catalogues and a wide range of multi-wavelength data (near- and far-infrared, optical and X-ray). We find a significant increase in the proportion of flat-spectrum sources at flux densities below 1 mJy - the median radio spectral index between 15.7 GHz and 610 MHz changes from 0.75 for flux densities greater than 1.5 mJy to 0.08 for flux densities less than 0.8 mJy. The multi-wavelength analysis shows that the vast majority (> 94 percent) of the 10C sources are radio galaxies; it is therefore likely that these faint, flat spectrum sources are a result of the cores of radio galaxies becoming dominant at high frequencies. We have used new observations to extend this study to even fainter flux densities, calculating the 15.7-GHz radio source count down to 0.1 mJy, a factor of five deeper than previous studies. There is no evidence for a new population of sources, showing that the high-frequency sky continues to be dominated by radio galaxies down to at least 0.1 mJy.
Details from ORA
Details from ArXiV

The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

Monthly Notices Of The Royal Astronomical Society Oxford University Press 453:4 (2015) 4244-4263

Authors:

Imogen Whittam, Julia Riley, Dave Green, Matthew Jarvis, Mattia Vaccari

Abstract:

A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below $\sim 1$ mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the SKADS Simulated Skies; a population of low-redshift starforming galaxies predicted by the simulation is not found in the observed sample.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Milliarcsecond properties of 10C sources in the Lockman Hole

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 440:1 (2014) 40-49

Authors:

IH Whittam, JM Riley, DA Green
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet