Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The EnVision Venus orbiter mission, proposed to ESA

Colin Wilson

Visitor

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Colin.Wilson@physics.ox.ac.uk
Telephone: 01865 (2)72086
Atmospheric Physics Clarendon Laboratory, room 301
  • About
  • Publications

Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapor

Journal of Geophysical Research: Planets Wiley 127:10 (2022) e2022JE007213

Authors:

KS Olsen, AA Fedorova, A Trokhimovskiy, F Montmessin, F Lefèvre, O Korablev, L Baggio, F Forget, E Millour, A Bierjon, J Alday, CF Wilson, PGJ Irwin, DA Belyaev, A Patrakeev, A Shakun

Abstract:

The mid-infrared channel of the Atmospheric Chemistry Suite (ACS MIR) onboard the ExoMars Trace Gas Orbiter is capable of observing the infrared absorption of ozone (O3) in the atmosphere of Mars. During solar occulations, the 003←000 band (3,000-3,060 cm−1) is observed with spectral sampling of ∼0.045 cm−1. Around the equinoxes in both hemispheres and over the southern winters, we regularly observe around 200–500 ppbv of O3 below 30 km. The warm southern summers, near perihelion, produce enough atmospheric moisture that O3 is not detectable at all, and observations are rare even at high northern latitudes. During the northern summers, water vapor is restricted to below 10 km, and an O3 layer (100–300 ppbv) is visible between 20 and 30 km. At this same time, the aphelion cloud belt forms, condensing water vapor and allowing O3 to build up between 30 and 40 km. A comparison to vertical profiles of water vapor and temperature in each season reveals that water vapor abundance is controlled by atmospheric temperature, and H2O and O3 are anti-correlated as expected. When the atmosphere cools, over time or over altitude, water vapor condenses (observed as a reduction in its mixing ratio) and the production of odd hydrogen species is reduced, which allows O3 to build up. Conversely, warmer temperatures lead to water vapor enhancements and ozone loss. The LMD Mars Global Climate Model is able to reproduce vertical structure and seasonal changes of temperature, H2O, and O3 that we observe. However, the observed O3 abundance is larger by factors between 2 and 6, indicating important differences in the rate of odd-hydrogen photochemistry.
More details from the publisher
Details from ORA
More details

A novel radiometer for clouds investigations in future Venus aerobot missions

Copernicus Publications (2022)

Authors:

Victor Apestigue, Daniel Toledo, Ignacio Arruego, Margarita Yela, Patrick GJ Irwin, Shubham Kulkarni, Colin F Wilson, Amanda Brecht, Kevin H Baines, James A Cutts
More details from the publisher

Investigating the properties of a near-surface cloud layer from Venera 13 and 14 descent probe data

Copernicus Publications (2022)

Authors:

Shubham Kulkarni, Colin Wilson, Patrick Irwin
More details from the publisher

Exploring the Clouds of Venus: Science Driven Aerobot Missions to our Sister Planet

Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 1-20

Authors:

James Cutts, Kevin Baines, Leonard Dorsky, William Frazier, Jacob Izraelevitz, Siddharth Krishnamoorthy, Michael Pauken, Mark S Wallace, Paul Byrne, Sara Seager, Colin Wilson, Joseph O'Rourke
More details from the publisher

No detection of SO2, H2S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS

Astronomy and Astrophysics EDP Sciences 658 (2022) A86

Authors:

As Braude, F Montmessin, Ks Olsen, A Trokhimovskiy, Oi Korablev, F Lefevre, Aa Fedorova, J Alday, L Baggio, A Irbah, G Lacombe, F Forget, E Millour, Cf Wilson, A Patrakeev, A Shakun

Abstract:

Context. The detection of sulphur species in the Martian atmosphere would be a strong indicator of volcanic outgassing from the surface of Mars.
Aims. We wish to establish the presence of SO2, H2S, or OCS in the Martian atmosphere or determine upper limits on their concentration in the absence of a detection.
Methods. We perform a comprehensive analysis of solar occultation data from the mid-infrared channel of the Atmospheric Chemistry Suite instrument, on board the ExoMars Trace Gas Orbiter, obtained during Martian years 34 and 35.
Results. For the most optimal sensitivity conditions, we determine 1σ upper limits of SO2 at 20 ppbv, H2S at 15 ppbv, and OCS at 0.4 ppbv; the last value is lower than any previous upper limits imposed on OCS in the literature. We find no evidence of any of these species above a 3σ confidence threshold. We therefore infer that passive volcanic outgassing of SO2 must be below 2 ktons day−1.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet