Confronting Earth System Model trends with observations.
Science advances 11:11 (2025) eadt8035
Abstract:
Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations. This review covers the state of the science on the ability of models to represent historical trends in the climate system. It also outlines robust procedures that should be used when comparing modeled and observed trends and how to move beyond quantification into understanding. Finally, this review discusses cutting-edge methods for identifying sources of discrepancies and the importance of future confrontations.Enhanced simulation of atmospheric blocking in a high-resolution earth system model: projected changes and implications for extreme weather events
Journal of Geophysical Research: Atmospheres American Geophysical Union 130:3 (2025) e2024JD042045
Abstract:
Atmospheric blocking is closely linked to the occurrence of extreme weather events. However, low-resolution Earth system models often underestimate the frequency of blocking, undermining confidence in future projections. In this study, we use the high-resolution Community Earth System Model (CESM-HR; 25 km atmosphere and 10 km ocean) to show that CESM-HR reduces biases in atmospheric blocking for both winter and summer, particularly for events lasting longer than 10 days. This improvement is partly due to reduced sea surface temperature biases at higher resolution. Additionally, applying a bias correction to the 500 hPa geopotential height further enhances blocking frequency simulations, highlighting the crucial role of the mean state. Under the Representative Concentration Pathway 8.5 scenario, CESM-HR projects a decrease in wintertime blocking over regions such as the Euro-Atlantic and Chukchi-Alaska, consistent with previous studies. In contrast, summer blocking is expected to become more frequent and persistent, driven by weakened zonal winds. The blocking center shifts from historical locations over Scandinavia and eastern Russia to central Eurasia, significantly increasing blocking over the Ural region. Summer blocking frequency over the Scandinavia-Ural region may eventually surpass historical winter blocking over the Euro-Atlantic. This increase in summer blocking could exacerbate summer heatwaves in a warming climate, making severe heatwaves, like those observed recently, more common in the future.Environmental conditions affecting global mesoscale convective system occurrence
Journal of the Atmospheric Sciences American Meteorological Society 82:2 (2025) 391-407
Abstract:
The ERA5 environments of mesoscale convective systems (MCSs), tracked from satellite observations, are assessed over a 20-yr period. The use of a large set of MCS tracks allows us to robustly test the sensitivity of the results to factors such as region, latitude, and diurnal cycle. We aim to provide novel information on environments of observed MCSs for assessments of global atmospheric models and to improve their ability to simulate MCSs. Statistical analysis of all tracked MCSs is performed in two complementary ways. First, we investigate the environments when an MCS has occurred at different spatial scales before and after MCS formation. Several environmental variables are found to show marked changes before MCS initiation, particularly over land. The vertically integrated moisture flux convergence shows a robust signal across different regions and when considering MCS initiation diurnal cycle. We also found spatial scale dependence of the environments between 200 and 500 km, providing new evidence of a natural length scale for use with MCS parameterization. In the second analysis, the likelihood of MCS occurrence for given environmental conditions is evaluated, by considering all environments and determining the probability of being in an MCS core or shield region. These are compared to analogous non-MCS environments, allowing discrimination between conditions suitable for MCS and non-MCS occurrence. Three environmental variables are found to be useful predictors of MCS occurrence: total column water vapor, midlevel relative humidity, and total column moisture flux convergence. Such relations could be used as trigger conditions for the parameterization of MCSs, thereby strengthening the dependence of the MCS scheme on the environment.Complementary approaches to characterize the jet stream dynamics in summer and link them to extreme weather in Europe
Copernicus Publications (2024)
Role of Ocean Memory in Subpolar North Atlantic Decadal Variability
Copernicus Publications (2024)