Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures
Abstract:
It has been demonstrated that decadal variations in the North Atlantic Oscillation (NAO) can be predicted by current forecast models. While Atlantic Multidecadal Variability (AMV) in sea surface temperatures (SSTs) has been hypothesised as the source of this skill, the validity of this hypothesis and the pathways involved remain unclear. We show, using reanalysis and data from two forecast models, that the decadal predictability of the NAO can be entirely accounted for by the predictability of decadal variations in the speed of the North Atlantic eddy-driven jet, with no predictability of decadal variations in the jet latitude. The sub-polar North Atlantic (SPNA) is identified as the only obvious common source of an SST-based signal across the models and reanalysis, and the predictability of the jet speed is shown to be consistent with a forcing from the SPNA visible already within a single season. The pathway is argued to be tropospheric in nature, with the SPNA-associated heating extending up to the mid-troposphere, which alters the meridional temperature gradient around the climatological jet core. The relative roles of anthropogenic aerosol emissions and the Atlantic Meridional Overturning Circulation (AMOC) at generating predictable SPNA variability are also discussed. The analysis is extensively supported by the novel use of a set of seasonal hindcasts spanning the 20th century and forced with prescribed SSTs.European winter climate response to projected Arctic sea-ice loss strongly shaped by change in the North Atlantic jet
Impacts of Atlantic Multi-decadal Variability on the mid-latitude atmosphere
Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming
Abstract:
Climate models predict a weak poleward shift of the jets in response to continuing climate change. Here we revisit observed jet trends using 40 years of satellite-era reanalysis products and find evidence that general poleward shifts are emerging. The significance of these trends is often low and varies between datasets, but the similarity across different seasons and hemispheres is notable. While much recent work has focused on the jet response to amplified Arctic warming, the observed trends are more consistent with the known sensitivity of the circulation to tropical warming. The circulation trends are within the range of historical model simulations but are relatively large compared to the models when the accompanying trends in upper tropospheric temperature gradients are considered. The balance between tropical warming and jet shifts should therefore be closely monitored in the near future. We hypothesise that the sensitivity of the circulation to tropical heating may be one factor affecting this balance.