Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Woollings

Professor of Physical Climate Science

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Tim.Woollings@physics.ox.ac.uk
Telephone: 01865 (2)82427
Atmospheric Physics Clarendon Laboratory, room 203
  • About
  • Publications

European winter climate response to projected Arctic sea-ice loss strongly shaped by change in the North Atlantic jet

Geophysical Research Letters Wiley 50:5 (2023) e2022GL102005

Authors:

Tim Woollings, Kunhui Ye, James A Screen

Abstract:

Previous studies have found inconsistent responses of the North Atlantic jet to Arctic sea-ice loss. The response of wintertime atmospheric circulation and surface climate over the North Atlantic-European region to future Arctic sea-ice loss under 2°C global warming is analyzed, using model output from the Polar Amplification Model Intercomparison Project. The models agree that the North Atlantic jet shifts slightly southward in response to sea-ice loss, but they disagree on the sign of the jet speed response. The jet response induces a dipole anomaly of precipitation and storm track activity over the North Atlantic-European region. The changes in jet latitude and speed induce distinct regional surface climate responses, and together they strongly shape the North Atlantic-European response to future Arctic sea-ice loss. Constraining the North Atlantic jet response is important for reducing uncertainty in the North Atlantic-European precipitation response to future Arctic sea-ice loss.
More details from the publisher
Details from ORA
More details

Reconciling conflicting evidence for the cause of the observed early 21st century Eurasian cooling

Weather and Climate Dynamics Copernicus Publications 4:1 (2023) 95-114

Authors:

Stephen Outten, Camille Li, Martin King, Tim Woollings

Abstract:

It is now well established that the Arctic is warming at a faster rate than the global average. This warming, which has been accompanied by a dramatic decline in sea ice, has been linked to cooling over the Eurasian subcontinent over recent decades, most dramatically during the period 1998-2012. This is a counterintuitive impact under global warming given that land regions should warm more than ocean (and the global average). Some studies have proposed a causal teleconnection from Arctic sea ice retreat to Eurasian wintertime cooling; other studies argue that Eurasian cooling is mainly driven by internal variability and the relationship to sea ice is coincidental. Overall, there is an impression of strong disagreement between those holding the “ice-driven” versus “internal variability” viewpoints. Here, we offer an alternative framing showing that the sea ice and internal variability views can be compatible. Key to this is viewing Eurasian cooling through the lens of dynamics (linked primarily to internal variability with a small contribution from sea ice; cools Eurasia) and thermodynamics (linked to sea ice retreat; warms Eurasia). This approach, combined with recognition that there is uncertainty in the hypothesized mechanisms themselves, allow both viewpoints (and others) to co-exist and contribute to our understanding of Eurasian cooling. A simple autoregressive model shows that Eurasian cooling of this magnitude is consistent with internal variability, with some periods being more susceptible to strong cooling than others. Rather than posit a “yes-or-no” causal relationship between sea ice and Eurasian cooling, a more constructive way forward is to consider whether the cooling trend was more likely given the observed sea ice loss, as well as other sources of low-frequency variability. Taken in this way both sea ice and internal variability are factors that affect the likelihood of strong regional cooling in the presence of ongoing global warming.
More details from the publisher
Details from ORA
More details

The role of Rossby waves in polar weather and climate

Weather and Climate Dynamics Copernicus Publications 4:1 (2023) 61-80

Authors:

Tim Woollings, Camillie Li, Marie Drouard, K Elmestekawy, C Mbengue, Matthew Patterson

Abstract:

Recent Arctic warming has fuelled interest in the weather and climate of the polar regions and how this interacts with lower latitudes. Several interesting theories of polar-midlatitude linkages involve Rossby wave propagation as a key process even though the meridional gradient in planetary vorticity, crucial for these waves, is weak at high latitudes. Here we review some basic theory and suggest that Rossby waves can indeed explain some features of polar variability, especially when relative vorticity gradients are present.

We suggest that large-scale polar flow can be conceptualised as a mix of geostrophic turbulence and Rossby wave propagation, as in the midlatitudes, but with the balance tipped further in favour of turbulent flow. Hence, isolated vortices often dominate but some wavelike features remain. As an example, quasi-stationary or weakly westward-propagating subpolar anomalies emerge from statistical analysis of observed data, and these are consistent with some role for wave propagation. The noted persistence of polar cyclones and anticyclones is attributed in part to the weakened effects of wave dispersion, the mechanism responsible for the decay of midlatitude anomalies in downstream development. We also suggest that the vortex-dominated nature of polar dynamics encourages the emergence of annular mode structures in principal component analyses of extratropical circulation.

Finally, we consider how Rossby waves may be triggered from high latitudes. The linear mechanisms known to balance localised heating at lower latitudes are shown to be less efficient in the polar regions. Instead, we suggest the direct response to sea ice loss often manifests as a heat low, with radiative cooling balancing the heating. If the relative vorticity gradient is favourable this does have the potential to trigger a Rossby wave response, although this will often be weak compared to waves forced from lower latitudes.

More details from the publisher
Details from ORA
More details

Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations

(2023)

Authors:

Kunhui Ye, Tim Woollings, Sarah Sparrow, Peter Watson, James Screen
More details from the publisher

Fast and slow subpolar ocean responses to the North Atlantic Oscillation: thermal and dynamical changes

Geophysical Research Letters Wiley 49:24 (2022) e2022GL101480

Authors:

Hemant khatri, Tim Woollings

Abstract:

Climate model hindcasts are analyzed to reveal the impacts of the North Atlantic Oscillation (NAO) on the North Atlantic subpolar ocean, which exhibits variability on seasonal to decadal timescales. The ocean response to a single winter NAO event is separated into fast and slow responses. The fast response persists over winter–spring seasons, during which wind stress and heat flux anomalies associated with the NAO rapidly modify ocean temperatures via changes in Ekman transport and ocean-atmosphere heat exchanges. The slow response persists for 3–4 years, during which overturning and gyre circulations redistribute opposing-signed surface temperature anomalies created by the NAO. This redistribution modifies east-west temperature contrasts altering the meridional heat transport associated with gyres and changing the strength of the overturning circulation. Hence, the fast and slow responses lead to opposing-signed subpolar temperature anomalies in time from the competing effects of local forcing and horizontal heat convergence.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet