Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Woollings

Professor of Physical Climate Science

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Tim.Woollings@physics.ox.ac.uk
Telephone: 01865 (2)82427
Atmospheric Physics Clarendon Laboratory, room 203
  • About
  • Publications

Advancing Organized Convection Representation in the Unified Model: Implementing and Enhancing Multiscale Coherent Structure Parameterization

(2024)

Authors:

Zhixiao Zhang, Hannah Christensen, Mark Muetzelfeldt, Tim Woollings, Robert Stephen Plant, Alison Stirling, Michael Whitall, Mitchell W Moncrieff, Chih-Chieh Chen, Zhe Feng
More details from the publisher

Asymmetric hysteresis response of midlatitude storm tracks to CO2 removal

Nature Climate Change Springer Nature 14:5 (2024) 496-503

Authors:

Jaeyoung Hwang, Seok-Woo Son, Chaim I Garfinkel, Tim Woollings, Hyunsuk Yoon, Soon-Il An, Sang-Wook Yeh, Seung-Ki Min, Jong-Seong Kug, Jongsoo Shin

Abstract:

In a warming climate, storm tracks are projected to intensify on their poleward side. Here we use large ensemble CO2 ramp-up and -down simulations to show that these changes are not reversed when CO2 concentrations are reduced. If CO2 is removed from the atmosphere following CO2 increase, the North Atlantic storm track keeps strengthening until the middle of the CO2 removal, while the recovery of the North Pacific storm track during ramp-down is stronger than its shift during ramp-up. In contrast, the Southern Hemisphere storm track weakens during ramp-down at a rate much faster than its strengthening in the warming period. Compared to the present climate, the Northern Hemisphere storm track becomes stronger and the Southern Hemisphere storm track becomes weaker at the end of CO2 removal. These hemispherically-asymmetric storm track responses are attributable to the weakened Atlantic meridional overturning circulation and the delayed cooling of the Southern Ocean.
More details from the publisher
Details from ORA
More details

Improving and Assessing Organized Convection Parameterization in the Unified Model

Copernicus Publications (2024)

Authors:

Zhixiao Zhang, Hannah Christensen, Mark Muetzelfeldt, Tim Woollings, Bob Plant, Alison Stirling, Michael Whitall, Mitchell Moncrieff, Chih-Chieh Chen
More details from the publisher

Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations

Copernicus Publications (2024)

Authors:

Kunhui Ye, Tim Woollings, Sarah Sparrow, Peter Watson, James Screen
More details from the publisher

Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations

npj Climate and Atmospheric Science Springer Nature 7:1 (2024) 20

Authors:

Kunhui Ye, Tim Woollings, Sarah N Sparrow, Peter AG Watson, James A Screen

Abstract:

Very large (~2000 members) initial-condition ensemble simulations have been performed to advance understanding of mean climate and extreme weather responses to projected Arctic sea-ice loss under 2 °C global warming above preindustrial levels. These simulations better sample internal atmospheric variability and extremes for each model compared to those from the Polar Amplification Model Intercomparison Project (PAMIP). The mean climate response is mostly consistent with that from the PAMIP multi-model ensemble, including tropospheric warming, reduced midlatitude westerlies and storm track activity, an equatorward shift of the eddy-driven jet and increased mid-to-high latitude blocking. Two resolutions of the same model exhibit significant differences in the stratospheric circulation response; however, these differences only weakly modulate the tropospheric response. The response of temperature and precipitation extremes largely follows the seasonal-mean response. Sub-sampling confirms that large ensembles (e.g. ≥400) are needed to robustly estimate the seasonal-mean large-scale circulation response, and very large ensembles (e.g. ≥1000) for regional climate and extremes.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet