How does the winter jet stream affect surface temperature, heat flux and sea ice in the North Atlantic? How does the winter jet stream affect surface temperature, heat flux and sea ice in the North Atlantic?
Journal of Climate American Meteorological Society 33:9 (2020) 3711-3730
An interdecadal shift of the extratropical teleconnection from the tropical Pacific during boreal summer
Geophysical Research Letters American Geophysical Union 46:22 (2019) 13379-13388
Abstract:
The extratropical teleconnection from the tropical Pacific in boreal summer exhibits a significant shift over the past 70 years. Cyclonic circulation anomalies over the North Atlantic and Eurasia associated with El Niño in the later period (1978‐2014) are absent in the earlier period (1948‐1977). An initialised atmospheric model ensemble, performed with prescribed sea surface temperature (SST) boundary conditions, replicates some key features of the shift in the teleconnection, providing clear evidence that this shift is not simply due to internal atmospheric variability or random sampling. Additional ensemble simulations, one with detrended tropical SSTs and another with constant external forcing are analysed. In the model, the teleconnection shift is associated with climatological atmospheric circulation changes, which are substantially reduced in the simulation with detrended tropical SSTs. These results demonstrate that the climatological atmospheric circulation and associated teleconnection changes are largely forced by tropical SST trends.Tropical atmospheric drivers of wintertime European precipitation events
Quarterly Journal of the Royal Meteorological Society Wiley 146:727 (2019) 780-794
Abstract:
From observations, we identify a wave‐like pattern associated with northwestern European seasonal precipitation events. These events are associated with tropical precipitation anomalies, prompting us to investigate if there are any tropical–extratropical teleconnections, in particular the role of tropical anomalies in driving extratropical dynamics through Rossby wave propagation. Using a hierarchy of models from ray tracing to barotropic and baroclinic models, we investigate the Rossby wave mechanism and test potential tropical drivers and yield qualitative results. Using a barotropic model, we identify potential Rossby wave source regions which are consistent between the observations and the model. These regions include the tropical western and eastern Atlantic, the subtropical eastern Atlantic and, to a smaller degree, the subtropical eastern Pacific. Zonal wavenumber 2 and 3 components of the barotropic model responses match well with the observations and ray tracing supports the importance of these components. We use a baroclinic model to investigate the link between the observed Rossby wave source anomalies and the observed tropical precipitation anomalies. The reduced precipitation observed in the tropical Atlantic just north of the Equator can generate some of the observed Rossby wave source anomalies in the tropical Atlantic, while the increased precipitation observed in the tropical eastern Pacific can generate some of the observed Rossby wave source anomalies in the subtropical eastern Pacific. Our results can also be applied to European drought events because of the qualitative linearity in the observations and in our linear methods.Disentangling dynamic contributions to summer 2018 anomalous weather over Europe
Geophysical Research Letters American Geophysical Union (2019)
Abstract:
Summer 2018 was one of the driest and hottest experienced over northwestern Europe. In contrast, over southern Europe, it was marked by cooler and wetter conditions with flooding over Greece and Spain. This contrasting pattern was particularly enhanced over a 3‐week period starting on 21 June. Two atmospheric patterns are thought to have largely contributed to this anomalous weather: the positive North Atlantic Oscillation (NAO+) and a Wave‐7 pattern. Using linear regressions on detrended data, we show that the NAO+ was mainly responsible for the observed seasonal anomalies. However, during the 3‐week period, the rare combination of the NAO+ and Wave‐7 is necessary to explain the pattern of the observed anomalies. The global warming trend and, to a lesser extent, nonlinear processes are shown to have furthermore strongly modulated the anomalies associated with these two patterns.Assessing external and internal sources of Atlantic Multidecadal Variability using models, proxy data, and early instrumental indices
Journal of Climate American Meteorological Society 32 (2019) 7727-7745