Decadal variability of the East Asian summer jet and its relationship to sea surface temperatures
Copernicus Publications (2021)
The jet stream and climate change
Chapter in Climate Change: Observed Impacts on Planet Earth, Third Edition, (2021) 327-357
Abstract:
Strong rivers of westerly winds, known as jet streams, are driven primarily by temperature differences between low and high latitudes as well as the rotation of the Earth. The jet streams create and impact weather systems and steer them in the midlatitudes of both hemispheres. Often, these jet streams do not flow directly from west to east, but rather meander north and south in a wave pattern of alternating high- and low-pressure regions. These meanders are Rossby waves, which influence the jet streams via baroclinic instability caused by temperature gradients. Depending on their wavelength, latitude, and the background wind speed, these waves can move to the east or to the west and under certain conditions also be (quasi)stationary. Jet streams can locally increase the gradient of vorticity (atmospheric spin), so that atmospheric wave guides may be formed. These waveguides affect the propagation pathways of Rossby waves, often leading to more zonal propagation, and potentially amplification of waves. Rossby waves, jets, and waveguides affect atmospheric eddies, such as anticyclonic blocks, and can create prolonged weather conditions that lead to extreme weather impacts.Chapter 15 The jet stream and climate change
Chapter in Climate Change, Elsevier (2021) 327-357
Wintertime Southern Hemisphere jet streams shaped by interaction of transient eddies with Antarctic orography
Journal of Climate Wiley 33:24 (2020) 10505-10522
Abstract:
The wintertime Southern Hemisphere extratropical circulation exhibits considerable zonal asymmetries. We investigate the roles of various surface boundary conditions in shaping the mean state using a semi-realistic, atmosphere-only climate model. We find, in agreement with previous literature, that tropical sea surface temperature (SST) patterns are an important contributor to the mean state, while midlatitude SSTs and sea ice extent play a smaller role. Our main finding is that Antarctic orography has a first-order effect on the structure of the midlatitude circulation. In the absence of Antarctic orography, equatorward eddy momentum fluxes associated with the orography are removed and hence convergence of eddy momentum in midlatitudes is reduced. This weakens the Indian Ocean jet, making Rossby wave propagation downstream to the South Pacific less favorable. Consequently, the flow stagnates over the mid- to high-latitude South Pacific and the characteristic split jet pattern is destroyed. Removing Antarctic orography also results in a substantial warming over East Antarctica partly because transient eddies are able to penetrate farther poleward, enhancing poleward heat transport. However, experiments in which a high-latitude cooling is applied indicate that these temperature changes are not the primary driver of circulation changes in the midlatitudes. Instead, we invoke a simple barotropic mechanism in which the orographic slope creates an effective potential vorticity gradient that alters the eddy momentum flux.Tracing North Atlantic Oscillation Forecast Errors to Stratospheric Origins
Journal of Climate American Meteorological Society 33:21 (2020) 9145-9157