Focusing Solenoids for the Mice Cooling Channel

AIP Conference Proceedings AIP Publishing 710:1 (2004) 791-798

Authors:

MA Green, E Baynham, G Barr, W Lau, JH Rochford, S Yang

A precision measurement of the mass of the top quark.

Nature 429:6992 (2004) 638-642

Authors:

VM Abazov, B Abbott, A Abdesselam, M Abolins, V Abramov, BS Acharya, DL Adams, M Adams, SN Ahmed, GD Alexeev, A Alton, GA Alves, Y Arnoud, C Avila, VV Babintsev, L Babukhadia, TC Bacon, A Baden, S Baffioni, B Baldin, PW Balm, S Banerjee, E Barberis, P Baringer, J Barreto, JF Bartlett, U Bassler, D Bauer, A Bean, F Beaudette, M Begel, A Belyaev, SB Beri, G Bernardi, I Bertram, A Besson, R Beuselinck, VA Bezzubov, PC Bhat, V Bhatnagar, M Bhattacharjee, G Blazey, F Blekman, S Blessing, A Boehnlein, NI Bojko, TA Bolton, F Borcherding, K Bos, T Bose, A Brandt, G Briskin, R Brock, G Brooijmans, A Bross, D Buchholz, M Buehler, V Buescher, VS Burtovoi, JM Butler, F Canelli, W Carvalho, D Casey, H Castilla-Valdez, D Chakraborty, KM Chan, SV Chekulaev, DK Cho, S Choi, S Chopra, D Claes, AR Clark, B Connolly, WE Cooper, D Coppage, S Crépé-Renaudin, MAC Cummings, D Cutts, H Da Motta, GA Davis, K De, SJ De Jong, M Demarteau, R Demina, P Demine, D Denisov, SP Denisov, S Desai, HT Diehl, M Diesburg, S Doulas, LV Dudko, L Duflot, SR Dugad, A Duperrin, A Dyshkant, D Edmunds, J Ellison, JT Eltzroth, VD Elvira, R Engelmann, S Eno, G Eppley, P Ermolov, OV Eroshin, J Estrada, H Evans, VN Evdokimov, T Ferbel, F Filthaut, HE Fisk, M Fortner, H Fox, S Fu, S Fuess, E Gallas, AN Galyaev, M Gao, V Gavrilov, RJ Genik, K Genser, CE Gerber, Y Gershtein, G Ginther, B Gómez, PI Goncharov, K Gounder, A Goussiou, PD Grannis, H Greenlee, ZD Greenwood, S Grinstein, L Groer, S Grünendahl, MW Grünewald, SN Gurzhiev, G Gutierrez, P Gutierrez, NJ Hadley, H Haggerty, S Hagopian, V Hagopian, RE Hall, C Han, S Hansen, JM Hauptman, C Hebert, D Hedin, JM Heinmiller, AP Heinson, U Heintz, MD Hildreth, R Hirosky, JD Hobbs, B Hoeneisen, J Huang, Y Huang, I Iashvili, R Illingworth, AS Ito, M Jaffré, S Jain, R Jesik, K Johns, M Johnson, A Jonckheere, H Jöstlein, A Juste, W Kahl, S Kahn, E Kajfasz, AM Kalinin, D Karmanov, D Karmgard, R Kehoe, S Kesisoglou, A Khanov, A Kharchilava, B Klima, JM Kohli, AV Kostritskiy, J Kotcher, B Kothari, AV Kozelov, EA Kozlovsky, J Krane, MR Krishnaswamy, P Krivkova, S Krzywdzinski, M Kubantsev, S Kuleshov, Y Kulik, S Kunori, A Kupco, VE Kuznetsov, G Landsberg, WM Lee, A Leflat, F Lehner, C Leonidopoulos, J Li, QZ Li, JGR Lima, D Lincoln, SL Linn, J Linnemann, R Lipton, A Lucotte, L Lueking, C Lundstedt, C Luo, AKA Maciel, RJ Madaras, VL Malyshev, V Manankov, HS Mao, T Marshall, MI Martin, SEK Mattingly, AA Mayorov, R McCarthy, T McMahon, HL Melanson, A Melnitchouk, A Merkin, KW Merritt, C Miao, H Miettinen, D Mihalcea, N Mokhov, NK Mondal, HE Montgomery, RW Moore, YD Mutaf, E Nagy, M Narain, VS Narasimham, NA Naumann, HA Neal, JP Negret, S Nelson, A Nomerotski, T Nunnemann, D O'Neil, V Oguri, N Oshima, P Padley, K Papageorgiou, N Parashar, R Partridge, N Parua, A Patwa, O Peters, P Pétroff, R Piegaia, BG Pope, HB Prosper, S Protopopescu, MB Przybycien, J Qian, S Rajagopalan, PA Rapidis, NW Reay, S Reucroft, M Ridel, M Rijssenbeek, F Rizatdinova, T Rockwell, C Royon, P Rubinov, R Ruchti, BM Sabirov, G Sajot, A Santoro, L Sawyer, RD Schamberger, H Schellman, A Schwartzman, E Shabalina, RK Shivpuri, D Shpakov, M Shupe, RA Sidwell, V Simak, V Sirotenko, P Slattery, RP Smith, GR Snow, J Snow, S Snyder, J Solomon, Y Song, V Sorín, M Sosebee, N Sotnikova, K Soustruznik, M Souza, NR Stanton, G Steinbrück, D Stoker, V Stolin, A Stone, DA Stoyanova, MA Strang, M Strauss, M Strovink, L Stutte, A Sznajder, M Talby, W Taylor, S Tentindo-Repond, TG Trippe, AS Turcot, PM Tuts, R Van Kooten, V Vaniev, N Varelas, F Villeneuve-Seguier, AA Volkov, AP Vorobiev, HD Wahl, Z-M Wang, J Warchol, G Watts, M Wayne, H Weerts, A White, D Whiteson, DA Wijngaarden, S Willis, SJ Wimpenny, J Womersley, DR Wood, Q Xu, R Yamada, T Yasuda, YA Yatsunenko, K Yip, J Yu, M Zanabria, X Zhang, B Zhou, Z Zhou, M Zielinski, D Zieminska, A Zieminski, V Zutshi, EG Zverev, A Zylberstejn, DØ Collaboration

Abstract:

The standard model of particle physics contains parameters--such as particle masses--whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M(t)) and W boson (M(W)) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M(t) can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10(-24) s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3 GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M(t) becomes 178.0 +/- 4.3 GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c2.

Measurement of the Ξ0 → Λγ decay asymmetry and branching fraction

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 584:3-4 (2004) 251-259

Authors:

A Lai, D Marras, A Bevan, RS Dosanjh, TJ Gershon, B Hay, GE Kalmus, C Lazzeroni, DJ Munday, E Olaiya, MA Parker, TO White, SA Wotton, G Barr, G Bocquet, A Ceccucci, T Cuhadar-Dönszelmann, D Cundy, G D'Agostini, N Doble, V Falaleev, L Gatignon, A Gonidec, B Gorini, G Govi, P Grafström, W Kubischta, A Lacourt, A Norton, S Palestini, B Panzer-Steindel, H Taureg, M Velasco, H Wahl, C Cheshkov, A Gaponenko, P Hristov, V Kekelidze, D Madigojine, N Molokanova, Y Potrebenikov, G Tatishvili, A Tkatchev, A Zinchenko, I Knowles, V Martin, R Sacco, A Walker, M Contalbrigo, P Dalpiaz, J Duclos, PL Frabetti, A Gianoli, M Martini, F Petrucci, M Savrié, A Bizzeti, M Calvetti, G Collazuol, G Graziani, E Iacopini, M Lenti, F Martelli, M Veltri, HG Becker, K Eppard, M Eppard, H Fox, A Kalter, K Kleinknecht, U Koch, L Köpke, P Lopes da Silva, P Marouelli, I Pellmann, A Peters, B Renk, SA Schmidt, V Schönharting, Y Schué, R Wanke, A Winhart, M Wittgen, JC Chollet, L Fayard, L Iconomidou-Fayard, J Ocariz, G Unal, I Wingerter-Seez, G Anzivino, P Cenci, E Imbergamo, P Lubrano, A Mestvirishvili, A Nappi, M Pepe, M Piccini, L Bertanza, R Carosi, R Casali

Abstract:

In data taken with the NA48 experiment at the CERN SPS in 1999, 730 candidates of the weak radiative hyperon decay Ξ0→Λγ have been found with an estimated background of 58±8 events. From these events the Ξ0→Λγ decay asymmetry has been determined to α(Ξ0→Λγ)=-0.78±0.18stat±0.06 syst, which is the first evidence of a decay asymmetry in Ξ 0→Λγ. The branching fraction of the decay has been measured to be Br(Ξ0→Λγ)=(1.16±0.05 stat±0.06syst)×10-3. © 2004 Elsevier B.V. All rights reserved.

On the linearity of the MINOS light-injection calibration system

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 521:2-3 (2004) 361-366

Authors:

P Adamson, L Barrett, A Belias, A Blake, A Cabrera, E Falk, PG Harris, J Hartnell, C Howcroft, M Kordosky, K Lang, R Lee, J Liu, D Michael, R Morse, JK Nelson, R Nichol, G Pearce, K Ruddick, PN Smith, PA Symes, J Thomas, PL Vahle, R Webb, A Weber, RF White

Abstract:

The MINOS light-injection calibration system has been fully documented in a previous article (Nucl. Instr. and Meth. A 492 (2002) 353). Upon commissioning in the MINOS detectors, the system was found to give a non-linear response to variations in the intensity of injected light. The source of this non-linearity has been traced to a small change in the spectrum of the injected light as a function of the current applied to the original blue LEDs, in combination with a rapidly varying spectral response function of the wavelength-shifting fibre used in the detector. Both aspects of the problem have been addressed successfully by use of LEDs with different spectral characteristics, and the system now has a linear response. © 2003 Elsevier B.V. All rights reserved.

Optimized search for single-top-quark production at the Fermilab Tevatron

Physical Review D - Particles, Fields, Gravitation and Cosmology 69:5 (2004)

Authors:

D Acosta, T Affolder, MG Albrow, D Ambrose, D Amidei, K Anikeev, J Antos, G Apollinari, T Arisawa, A Artikov, W Ashmanskas, F Azfar, P Azzi-Bacchetta, N Bacchetta, H Bachacou, W Badgett, A Barbaro-Galtieri, VE Barnes, BA Barnett, S Baroiant, M Barone, G Bauer, F Bedeschi, S Behari, S Belforte, WH Bell, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, M Binkley, D Bisello, M Bishai, RE Blair, C Blocker, K Bloom, B Blumenfeld, A Bocci, A Bodek, G Bolla, A Bolshov, D Bortoletto, J Boudreau, C Bromberg, E Brubaker, J Budagov, HS Budd, K Burkett, G Busetto, KL Byrum, S Cabrera, M Campbell, W Carithers, D Carlsmith, A Castro, D Cauz, A Cerri, L Cerrito, J Chapman, C Chen, YC Chen, M Chertok, G Chiarelli, G Chlachidze, F Chlebana, ML Chu, JY Chung, WH Chung, YS Chung, CI Ciobanu, AG Clark, M Coca, A Connolly, M Convery, J Conway, M Cordelli, J Cranshaw, R Culbertson, D Dagenhart, S D’Auria, P Barbaro, S Cecco, S Dell’Agnello, M Dell’Orso, S Demers, L Demortier, M Deninno, D Pedis, PF Derwent, C Dionisi, JR Dittmann, A Dominguez, S Donati, M D’Onofrio, T Dorigo, N Eddy, R Erbacher, D Errede, S Errede

Abstract:

We use a neural-network technique to search for standard model single-top-quark production in the [Formula Presented] dataset accumulated by the Collider Detector at Fermilab detector during the 1992–1995 collider run (“run I”). Using a sample of 64 [Formula Presented] 2, 3 jets events, we set a 95% confidence level upper limit of 24 pb on the W-gluon and [Formula Presented] combined single-top cross section. © 2004 The American Physical Society.