A precision measurement of the mass of the top quark.

Nature 429:6992 (2004) 638-642

Authors:

VM Abazov, B Abbott, A Abdesselam, M Abolins, V Abramov, BS Acharya, DL Adams, M Adams, SN Ahmed, GD Alexeev, A Alton, GA Alves, Y Arnoud, C Avila, VV Babintsev, L Babukhadia, TC Bacon, A Baden, S Baffioni, B Baldin, PW Balm, S Banerjee, E Barberis, P Baringer, J Barreto, JF Bartlett, U Bassler, D Bauer, A Bean, F Beaudette, M Begel, A Belyaev, SB Beri, G Bernardi, I Bertram, A Besson, R Beuselinck, VA Bezzubov, PC Bhat, V Bhatnagar, M Bhattacharjee, G Blazey, F Blekman, S Blessing, A Boehnlein, NI Bojko, TA Bolton, F Borcherding, K Bos, T Bose, A Brandt, G Briskin, R Brock, G Brooijmans, A Bross, D Buchholz, M Buehler, V Buescher, VS Burtovoi, JM Butler, F Canelli, W Carvalho, D Casey, H Castilla-Valdez, D Chakraborty, KM Chan, SV Chekulaev, DK Cho, S Choi, S Chopra, D Claes, AR Clark, B Connolly, WE Cooper, D Coppage, S Crépé-Renaudin, MAC Cummings, D Cutts, H Da Motta, GA Davis, K De, SJ De Jong, M Demarteau, R Demina, P Demine, D Denisov, SP Denisov, S Desai, HT Diehl, M Diesburg, S Doulas, LV Dudko, L Duflot, SR Dugad, A Duperrin, A Dyshkant, D Edmunds, J Ellison, JT Eltzroth, VD Elvira, R Engelmann, S Eno, G Eppley, P Ermolov, OV Eroshin, J Estrada, H Evans, VN Evdokimov, T Ferbel, F Filthaut, HE Fisk, M Fortner, H Fox, S Fu, S Fuess, E Gallas, AN Galyaev, M Gao, V Gavrilov, RJ Genik, K Genser, CE Gerber, Y Gershtein, G Ginther, B Gómez, PI Goncharov, K Gounder, A Goussiou, PD Grannis, H Greenlee, ZD Greenwood, S Grinstein, L Groer, S Grünendahl, MW Grünewald, SN Gurzhiev, G Gutierrez, P Gutierrez, NJ Hadley, H Haggerty, S Hagopian, V Hagopian, RE Hall, C Han, S Hansen, JM Hauptman, C Hebert, D Hedin, JM Heinmiller, AP Heinson, U Heintz, MD Hildreth, R Hirosky, JD Hobbs, B Hoeneisen, J Huang, Y Huang, I Iashvili, R Illingworth, AS Ito, M Jaffré, S Jain, R Jesik, K Johns, M Johnson, A Jonckheere, H Jöstlein, A Juste, W Kahl, S Kahn, E Kajfasz, AM Kalinin, D Karmanov, D Karmgard, R Kehoe, S Kesisoglou, A Khanov, A Kharchilava, B Klima, JM Kohli, AV Kostritskiy, J Kotcher, B Kothari, AV Kozelov, EA Kozlovsky, J Krane, MR Krishnaswamy, P Krivkova, S Krzywdzinski, M Kubantsev, S Kuleshov, Y Kulik, S Kunori, A Kupco, VE Kuznetsov, G Landsberg, WM Lee, A Leflat, F Lehner, C Leonidopoulos, J Li, QZ Li, JGR Lima, D Lincoln, SL Linn, J Linnemann, R Lipton, A Lucotte, L Lueking, C Lundstedt, C Luo, AKA Maciel, RJ Madaras, VL Malyshev, V Manankov, HS Mao, T Marshall, MI Martin, SEK Mattingly, AA Mayorov, R McCarthy, T McMahon, HL Melanson, A Melnitchouk, A Merkin, KW Merritt, C Miao, H Miettinen, D Mihalcea, N Mokhov, NK Mondal, HE Montgomery, RW Moore, YD Mutaf, E Nagy, M Narain, VS Narasimham, NA Naumann, HA Neal, JP Negret, S Nelson, A Nomerotski, T Nunnemann, D O'Neil, V Oguri, N Oshima, P Padley, K Papageorgiou, N Parashar, R Partridge, N Parua, A Patwa, O Peters, P Pétroff, R Piegaia, BG Pope, HB Prosper, S Protopopescu, MB Przybycien, J Qian, S Rajagopalan, PA Rapidis, NW Reay, S Reucroft, M Ridel, M Rijssenbeek, F Rizatdinova, T Rockwell, C Royon, P Rubinov, R Ruchti, BM Sabirov, G Sajot, A Santoro, L Sawyer, RD Schamberger, H Schellman, A Schwartzman, E Shabalina, RK Shivpuri, D Shpakov, M Shupe, RA Sidwell, V Simak, V Sirotenko, P Slattery, RP Smith, GR Snow, J Snow, S Snyder, J Solomon, Y Song, V Sorín, M Sosebee, N Sotnikova, K Soustruznik, M Souza, NR Stanton, G Steinbrück, D Stoker, V Stolin, A Stone, DA Stoyanova, MA Strang, M Strauss, M Strovink, L Stutte, A Sznajder, M Talby, W Taylor, S Tentindo-Repond, TG Trippe, AS Turcot, PM Tuts, R Van Kooten, V Vaniev, N Varelas, F Villeneuve-Seguier, AA Volkov, AP Vorobiev, HD Wahl, Z-M Wang, J Warchol, G Watts, M Wayne, H Weerts, A White, D Whiteson, DA Wijngaarden, S Willis, SJ Wimpenny, J Womersley, DR Wood, Q Xu, R Yamada, T Yasuda, YA Yatsunenko, K Yip, J Yu, M Zanabria, X Zhang, B Zhou, Z Zhou, M Zielinski, D Zieminska, A Zieminski, V Zutshi, EG Zverev, A Zylberstejn, DØ Collaboration

Abstract:

The standard model of particle physics contains parameters--such as particle masses--whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M(t)) and W boson (M(W)) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M(t) can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10(-24) s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3 GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M(t) becomes 178.0 +/- 4.3 GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c2.

Measurement of the Ξ0 → Λγ decay asymmetry and branching fraction

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 584:3-4 (2004) 251-259

Authors:

A Lai, D Marras, A Bevan, RS Dosanjh, TJ Gershon, B Hay, GE Kalmus, C Lazzeroni, DJ Munday, E Olaiya, MA Parker, TO White, SA Wotton, G Barr, G Bocquet, A Ceccucci, T Cuhadar-Dönszelmann, D Cundy, G D'Agostini, N Doble, V Falaleev, L Gatignon, A Gonidec, B Gorini, G Govi, P Grafström, W Kubischta, A Lacourt, A Norton, S Palestini, B Panzer-Steindel, H Taureg, M Velasco, H Wahl, C Cheshkov, A Gaponenko, P Hristov, V Kekelidze, D Madigojine, N Molokanova, Y Potrebenikov, G Tatishvili, A Tkatchev, A Zinchenko, I Knowles, V Martin, R Sacco, A Walker, M Contalbrigo, P Dalpiaz, J Duclos, PL Frabetti, A Gianoli, M Martini, F Petrucci, M Savrié, A Bizzeti, M Calvetti, G Collazuol, G Graziani, E Iacopini, M Lenti, F Martelli, M Veltri, HG Becker, K Eppard, M Eppard, H Fox, A Kalter, K Kleinknecht, U Koch, L Köpke, P Lopes da Silva, P Marouelli, I Pellmann, A Peters, B Renk, SA Schmidt, V Schönharting, Y Schué, R Wanke, A Winhart, M Wittgen, JC Chollet, L Fayard, L Iconomidou-Fayard, J Ocariz, G Unal, I Wingerter-Seez, G Anzivino, P Cenci, E Imbergamo, P Lubrano, A Mestvirishvili, A Nappi, M Pepe, M Piccini, L Bertanza, R Carosi, R Casali

Abstract:

In data taken with the NA48 experiment at the CERN SPS in 1999, 730 candidates of the weak radiative hyperon decay Ξ0→Λγ have been found with an estimated background of 58±8 events. From these events the Ξ0→Λγ decay asymmetry has been determined to α(Ξ0→Λγ)=-0.78±0.18stat±0.06 syst, which is the first evidence of a decay asymmetry in Ξ 0→Λγ. The branching fraction of the decay has been measured to be Br(Ξ0→Λγ)=(1.16±0.05 stat±0.06syst)×10-3. © 2004 Elsevier B.V. All rights reserved.

On the linearity of the MINOS light-injection calibration system

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 521:2-3 (2004) 361-366

Authors:

P Adamson, L Barrett, A Belias, A Blake, A Cabrera, E Falk, PG Harris, J Hartnell, C Howcroft, M Kordosky, K Lang, R Lee, J Liu, D Michael, R Morse, JK Nelson, R Nichol, G Pearce, K Ruddick, PN Smith, PA Symes, J Thomas, PL Vahle, R Webb, A Weber, RF White

Abstract:

The MINOS light-injection calibration system has been fully documented in a previous article (Nucl. Instr. and Meth. A 492 (2002) 353). Upon commissioning in the MINOS detectors, the system was found to give a non-linear response to variations in the intensity of injected light. The source of this non-linearity has been traced to a small change in the spectrum of the injected light as a function of the current applied to the original blue LEDs, in combination with a rapidly varying spectral response function of the wavelength-shifting fibre used in the detector. Both aspects of the problem have been addressed successfully by use of LEDs with different spectral characteristics, and the system now has a linear response. © 2003 Elsevier B.V. All rights reserved.

Optimized search for single-top-quark production at the Fermilab Tevatron

Physical Review D - Particles, Fields, Gravitation and Cosmology 69:5 (2004)

Authors:

D Acosta, T Affolder, MG Albrow, D Ambrose, D Amidei, K Anikeev, J Antos, G Apollinari, T Arisawa, A Artikov, W Ashmanskas, F Azfar, P Azzi-Bacchetta, N Bacchetta, H Bachacou, W Badgett, A Barbaro-Galtieri, VE Barnes, BA Barnett, S Baroiant, M Barone, G Bauer, F Bedeschi, S Behari, S Belforte, WH Bell, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, M Binkley, D Bisello, M Bishai, RE Blair, C Blocker, K Bloom, B Blumenfeld, A Bocci, A Bodek, G Bolla, A Bolshov, D Bortoletto, J Boudreau, C Bromberg, E Brubaker, J Budagov, HS Budd, K Burkett, G Busetto, KL Byrum, S Cabrera, M Campbell, W Carithers, D Carlsmith, A Castro, D Cauz, A Cerri, L Cerrito, J Chapman, C Chen, YC Chen, M Chertok, G Chiarelli, G Chlachidze, F Chlebana, ML Chu, JY Chung, WH Chung, YS Chung, CI Ciobanu, AG Clark, M Coca, A Connolly, M Convery, J Conway, M Cordelli, J Cranshaw, R Culbertson, D Dagenhart, S D’Auria, P Barbaro, S Cecco, S Dell’Agnello, M Dell’Orso, S Demers, L Demortier, M Deninno, D Pedis, PF Derwent, C Dionisi, JR Dittmann, A Dominguez, S Donati, M D’Onofrio, T Dorigo, N Eddy, R Erbacher, D Errede, S Errede

Abstract:

We use a neural-network technique to search for standard model single-top-quark production in the [Formula Presented] dataset accumulated by the Collider Detector at Fermilab detector during the 1992–1995 collider run (“run I”). Using a sample of 64 [Formula Presented] 2, 3 jets events, we set a 95% confidence level upper limit of 24 pb on the W-gluon and [Formula Presented] combined single-top cross section. © 2004 The American Physical Society.

Search for 3- and 4-body decays of the scalar top quark in pp̄ collisions at √s=1.8 TeV

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 581:3-4 (2004) 147-155

Authors:

VM Abazov, B Abbott, A Abdesselam, M Abolins, V Abramov, BS Acharya, DL Adams, M Adams, SN Ahmed, GD Alexeev, A Alton, GA Alves, EW Anderson, Y Arnoud, C Avila, VV Babintsev, L Babukhadia, TC Bacon, A Baden, S Baffioni, B Baldin, PW Balm, S Banerjee, E Barberis, P Baringer, J Barreto, JF Bartlett, U Bassler, D Bauer, A Bean, F Beaudette, M Begel, A Belyaev, SB Beri, G Bernardi, I Bertram, A Besson, R Beuselinck, VA Bezzubov, PC Bhat, V Bhatnagar, M Bhattacharjee, G Blazey, F Blekman, S Blessing, A Boehnlein, NI Bojko, TA Bolton, F Borcherding, K Bos, T Bose, A Brandt, R Breedon, G Briskin, R Brock, G Brooijmans, A Bross, D Buchholz, M Buehler, V Buescher, VS Burtovoi, JM Butler, F Canelli, W Carvalho, D Casey, H Castilla-Valdez, D Chakraborty, KM Chan, SV Chekulaev, DK Cho, S Choi, S Chopra, D Claes, AR Clark, L Coney, B Connolly, WE Cooper, D Coppage, S Crépé-Renaudin, MAC Cummings, D Cutts, H da Motta, GA Davis, K De, SJ de Jong, M Demarteau, R Demina, P Demine, D Denisov, SP Denisov, S Desai, HT Diehl, M Diesburg, S Doulas, LV Dudko, S Duensing, L Duflot, SR Dugad, A Duperrin, A Dyshkant

Abstract:

We have searched for the signature of 3- and 4-body decays of pair-produced scalar top quarks (stop) in the inclusive final state containing an electron, a muon, and significant missing transverse energy using a sample of pp̄ events corresponding to 108.3 pb-1 of data collected with the DØ detector at Fermilab. The search is done in the framework of the minimal supersymmetric standard model assuming that the neutralino (χ̃10) is the lightest supersymmetric particle and is stable. No evidence for a signal is found and we derive cross-section upper limits as a function of stop (t̃) and neutralino masses in different decay scenarios leading to the bℓνχ̃10 final state. © 2004 Published by Elsevier B.V.