Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
Zeitschrift fur Physikalische Chemie (2018)
Abstract:
© 2018 Walter de Gruyter GmbH, Berlin/Boston 2018. The effciency of organic solar cells is not only determined by their absorber system, but also strongly dependent on the performance of numerous interlayers and charge transport layers. In order to establish new custom-made materials, the study of structure-properties relationships is of great importance. This publication examines a series of naphthalenetetracarboxylic diimide molecules (NTCDI) with varying side-chain length intended for the use as n-dopable electron transport materials in organic solar cells. While all compounds basically share very similar absorption spectra and energy level positions in the desired range, the introduction of alkyl chains has a large impact on thin film growth and charge transport properties: both crystallization and the increase of conductivity by molecular doping are suppressed. This has a direct influence on the series resistance of corresponding solar cells comprising an NTCDI derivative as electron transport material (ETM) as it lowers the power conversion efficiency to 1%. In contrast, using the side-chain free compound it is possible to achive an efficiency of 6.5%, which is higher than the efficiency of a comparable device comprising n-doped C60as standard ETM.Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency.
Beilstein journal of nanotechnology 9 (2018) 2114-2124
Abstract:
Antimony sulfide solar cells have demonstrated an efficiency exceeding 7% when assembled in an extremely thin absorber configuration deposited via chemical bath deposition. More recently, less complex, planar geometries were obtained from simple spin-coating approaches, but the device efficiency still lags behind. We compare two processing routes based on different precursors reported in the literature. By studying the film morphology, sub-bandgap absorption and solar cell performance, improved annealing procedures are found and the crystallization temperature is shown to be critical. In order to determine the optimized processing conditions, the role of the polymeric hole transport material is discussed. The efficiency of our best solar cells exceeds previous reports for each processing route, and our champion device displays one of the highest efficiencies reported for planar antimony sulfide solar cells.Organic Semiconductors ☆
Chapter in Reference Module in Materials Science and Materials Engineering, Elsevier (2018)
Hybrid organic/inorganic perovskite-polymer nanocomposites: toward the enhancement of structural and electrical properties
Journal of Physical Chemistry Letters American Chemical Society 8:24 (2017) 5981-5986
Abstract:
Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.Mixing of MnPc electronic states at the MnPc/Au(110) interface
Journal of Chemical Physics AIP Publishing 147:13 (2017) 134702