Direct observation and evolution of electronic coupling between organic semiconductors
University of Oxford (2020)
Abstract:
The data is in-situ spectroscopic ellipsometry data (mainly for psi and delta) used in the development and application of the DART method. CompleteEASE software from J.A.Woollam company was used for acquisition using RC2 Woollam ellipsometer, and exported in text document format. It can be imported using excel or in python.Development of a beam imaging system for the European spallation source tuning dump
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 950 (2020) 162790
Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors
Nature Communications Nature Research 10:1 (2019) 5538
Abstract:
Simultaneous control over both the energy levels and Fermi level, a key breakthrough for inorganic electronics, has yet to be shown for organic semiconductors. Here, energy level tuning and molecular doping are combined to demonstrate controlled shifts in ionisation potential and Fermi level of an organic thin film. This is achieved by p-doping a blend of two host molecules, zinc phthalocyanine and its eight-times fluorinated derivative, with tunable energy levels based on mixing ratio. The doping efficiency is found to depend on host mixing ratio, which is explained using a statistical model that includes both shifts of the host's ionisation potentials and, importantly, the electron affinity of the dopant. Therefore, the energy level tuning effect has a crucial impact on the molecular doping process. The practice of comparing host and dopant energy levels must consider the long-range electrostatic shifts to consistently explain the doping mechanism in organic semiconductors.Interrogating the impact of onion-like carbons on the supercapacitive properties of MXene (Ti2CTX)
Journal of Applied Physics AIP Publishing 126:13 (2019) 134301
Azetidinium as Cation in Lead Mixed Halide Perovskite Nanocrystals of Optoelectronic Quality
(2019)