Near-infrared absorbing semitransparent organic solar cells

Applied Physics Letters 99:19 (2011)

Authors:

J Meiss, F Holzmueller, R Gresser, K Leo, M Riede

Abstract:

We present efficient, semitransparent small molecule organic solar cells. The devices employ an indium tin oxide-free top contact, consisting of thin metal films and an additional organic capping layer for enhanced light in/outcoupling. The solar cell encorporates a bulk heterojunction with the donor material Ph2-benz-bodipy, an infrared absorber. Combination of Ph2-benz-bodipy with C60 as acceptor leads to devices with high open circuit voltages of up to 0.81 V and short circuit current densities of 5-6 mA/cm2, resulting in efficiences of 2.2%-2.5%. At the same time, the devices are highly transparent, with an average transmittance in the visible range (400-750 nm) of up to 47.9%, with peaks at 538 nm of up to 64.2% and an average transmittance in the yellow-green range of up to 61.8. © 2011 American Institute of Physics.

Effect of concentration gradients in ZnPc:C60 bulk heterojunction organic solar cells

Solar Energy Materials and Solar Cells 95:11 (2011) 2981-2986

Authors:

W Tress, K Leo, M Riede

Abstract:

A concentration gradient in a mixed absorber layer with increasing content of donor (acceptor) towards the hole (electron) collecting contact could improve the charge carrier collection in bulk heterojunction organic solar cells. We study p-i-metal type solar cells where the gradient in a 45 nm thick ZnPc:C absorber layer is introduced by varying the deposition rate during co-evaporation. It is shown that the observed increase in the performance is mainly caused by a better energy level alignment and reduced recombination at the p-side. A significant influence on charge carrier transport is not observed. However, regions with a concentration of less than 20% of one component do not fully contribute to the photocurrent. Voltage dependent external quantum efficiency data are used to identify the photoactive regions. © 2011 Elsevier B.V. All rights reserved.

Determining the C60 molecular arrangement in thin films by means of X-ray diffraction

Journal of Applied Crystallography 44:5 (2011) 983-990

Authors:

C Elschner, AA Levin, L Wilde, J Grenzer, C Schroer, K Leo, M Riede

Abstract:

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg-Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns. © 2011 International Union of Crystallography.

Synthesis of thiophene-substituted aza-BODIPYs and their optical and electrochemical properties

Tetrahedron 67:37 (2011) 7148-7155

Authors:

R Gresser, H Hartmann, M Wrackmeyer, K Leo, M Riede

Abstract:

A series of novel thiophene-substituted aza-BODIPY dyes were synthesized by means of a standard procedure and complemented by a Stille-coupling of a brominated species with 2-tributylstannylthiophene. The optical as well as the electrochemical properties of the compounds were investigated and compared to result of density functional theory (DFT) calculations. The influence of the thiophene substituents is discussed in dependence of the position at the aza-BODIPY core regarding the HOMO and LUMO frontier orbitals. The different distributions of the HOMO and LUMO coefficients over the BODIPY core lead to a variable influence of the thiophene substituents on the HOMO and LUMO energies, being the origin of the tunable optical and electrochemical properties. © 2011 Elsevier Ltd. All rights reserved.

Improved efficiency and lifetime in small molecule organic solar cells with optimized conductive polymer electrodes

Applied Physics Letters 99:11 (2011)

Authors:

Y Hyun Kim, C Sachse, M Hermenau, K Fehse, M Riede, L Müller-Meskamp, K Leo

Abstract:

We report on efficient and stable ITO-free small molecule organic solar cells with conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes using a post-treatment process, causing selective removal of PSS. The solar cells with post-treated PEDOT:PSS electrodes show significantly improved short circuit current densities and efficiencies compared to untreated devices. Moreover, the removal of PSS by the post-treatment significantly improves the lifetime of devices, which are more resistant to loss of fill factor compared to untreated devices. © 2011 American Institute of Physics.