Determining the C60 molecular arrangement in thin films by means of X-ray diffraction
Journal of Applied Crystallography 44:5 (2011) 983-990
Abstract:
The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg-Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns. © 2011 International Union of Crystallography.Synthesis of thiophene-substituted aza-BODIPYs and their optical and electrochemical properties
Tetrahedron 67:37 (2011) 7148-7155
Abstract:
A series of novel thiophene-substituted aza-BODIPY dyes were synthesized by means of a standard procedure and complemented by a Stille-coupling of a brominated species with 2-tributylstannylthiophene. The optical as well as the electrochemical properties of the compounds were investigated and compared to result of density functional theory (DFT) calculations. The influence of the thiophene substituents is discussed in dependence of the position at the aza-BODIPY core regarding the HOMO and LUMO frontier orbitals. The different distributions of the HOMO and LUMO coefficients over the BODIPY core lead to a variable influence of the thiophene substituents on the HOMO and LUMO energies, being the origin of the tunable optical and electrochemical properties. © 2011 Elsevier Ltd. All rights reserved.Improved efficiency and lifetime in small molecule organic solar cells with optimized conductive polymer electrodes
Applied Physics Letters 99:11 (2011)
Abstract:
We report on efficient and stable ITO-free small molecule organic solar cells with conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes using a post-treatment process, causing selective removal of PSS. The solar cells with post-treated PEDOT:PSS electrodes show significantly improved short circuit current densities and efficiencies compared to untreated devices. Moreover, the removal of PSS by the post-treatment significantly improves the lifetime of devices, which are more resistant to loss of fill factor compared to untreated devices. © 2011 American Institute of Physics.Molecules for organic electronics studied one by one.
Phys Chem Chem Phys 13:32 (2011) 14421-14426
Abstract:
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.Efficient organic tandem solar cells based on small molecules
Advanced Functional Materials 21:16 (2011) 3019-3028