Visualizing macroscopic inhomogeneities in perovskite solar cells
ACS Energy Letters American Chemical Society 7:7 (2022) 2311-2322
Abstract:
Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm2). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of “charge collection quality”, measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.Improving performance of fully scalable, flexible transparent conductive films made from carbon nanotubes and ethylene-vinyl acetate
Energy Reports Elsevier 8:S11 (2022) 48-60
Abstract:
We report process improvements for the fabrication of single-walled carbon nanotube ethylene-vinyl acetate transparent conductive films. CNT:EVA films demonstrate high resilience against folding and can replace the external dopant in a spiro-OMeTAD based hole selective contact of n-i-p perovskite solar cells achieving a steady-state efficiency of 16.3%. The adapted process is fully scalable, and compared to previous reports (Mazzotta et al., 2018) lowers the material cost dramatically and improves DC to optical conductivity ratio by two orders of magnitude to σdc/σop = 3.6 for pristine and σdc/σop = 15 for chemically doped films. We analyse the microstructure of our films via small angle neutron scattering and find a positive correlation between the long range packing density of the CNT:EVA films and the σdc/σop performance. Increasing monomer ratio and chain length of the EVA polymer improves resilience against bending strain, whereas no significant effect on the CNT wrapping and electrical conductivity of resulting films is found.Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells
Advanced Energy Materials Wiley (2022) 2103944-2103944
Interfacial rearrangements and strain evolution in the thin film growth of ZnPc on glass
Physical Review Materials American Physical Society 6:3 (2022) 33401
Abstract:
We report on the characterization of the growth of vacuum-deposited zinc phthalocyanine (ZnPc) thin films on glass through a combination of in situ grazing incidence x-ray scattering, x-ray reflectivity, and atomic force microscopy. We found that the growth at room temperature proceeds via the formation of two structurally unique substrate-induced interfacial layers, followed by the growth of the γ -ZnPc polymorph thereafter (thickness ≈ 1.0 nm). As the growth of the bulk γ -ZnPc progresses, a substantial out-of-plane lattice strain ( ≈ 15 % relative to γ -ZnPc powder) is continually relaxed during the thin film growth. The rate of strain relaxation was slowed after a thickness of ≈ 13 nm, corresponding to the transition from layer growth to island growth. The findings reveal the real-time microstructural evolution of ZnPc and highlight the importance of substrate-induced strain on thin film growth.Charge transfer state characterization and voltage losses of organic solar cells
JOURNAL OF PHYSICS-MATERIALS IOP Publishing 5:2 (2022) 24002