X-Ray measurements of radiation hard monolithic CMOS sensors at Diamond Light Source
Z boson production in Pb+Pb collisions at √sNN = 5.02 TeV measured by the ATLAS experiment
Abstract:
The production yield of Z bosons is measured in the electron and muon decay channels in Pb+Pb collisions at √sNN = 5.02 TeV with the ATLAS detector. Data from the 2015 LHC run corresponding to an integrated luminosity of 0.49 nb−1 are used for the analysis. The Z boson yield, normalised by the total number of minimum-bias events and the mean nuclear thickness function, is measured as a function of dilepton rapidity and event centrality. The measurements in Pb+Pb collisions are compared with similar measurements made in proton–proton collisions at the same centre-of-mass energy. The nuclear modification factor is found to be consistent with unity for all centrality intervals. The results are compared with theoretical predictions obtained at next-to-leading order using nucleon and nuclear parton distribution functions. The normalised Z boson yields in Pb+Pb collisions lie 1–3σ above the predictions. The nuclear modification factor measured as a function of rapidity agrees with unity and is consistent with a next-to-leading-order QCD calculation including the isospin effectTransverse momentum and process dependent azimuthal anisotropies in root S-NN=8.16 TeV p plus Pb collisions with the ATLAS detector
Abstract:
The azimuthal anisotropy of charged particles produced in sNN=8.16 TeV p+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 165 nb - 1 that was collected in 2016. Azimuthal anisotropy coefficients, elliptic v2 and triangular v3, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum (pT) between 0.5 and 50 GeV. The v2 results are also reported as a function of centrality in three different particle pT intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet pT thresholds are used. The anisotropies for particles with pT less than about 2 GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for pT in the range 9–50 GeV are not explained within current theoretical frameworks. In the pT range 2–9 GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.(py)LIon: A package for simulating trapped ion trajectories
Abstract:
The (py)LIon package is a set of tools to simulate the classical trajectories of ensembles of ions in electrodynamic traps. Molecular dynamics simulations are performed using LAMMPS, an efficient and feature-rich program. (py)LIon has been validated by comparison with the analytic theory describing ion trap dynamics. Notable features include GPU-accelerated force calculations, and treating collections of ions as rigid bodies to enable investigations of the rotational dynamics of large, mesoscopic charged particles.
Programme summary
Program Title: (py)LIon
Program Files doi: http://dx.doi.org/10.17632/ywwd9nnxjh.1
Licencing provisions: MIT
Programming language: Matlab, Python
Subprograms used: LAMMPS
Nature of problem: Simulating the dynamics of ions and mesoscopic charged particles confined in an electrodynamic trap using molecular dynamics methods
Solution method: Provide a tested, feature-rich API to configure molecular dynamics calculations in LAMMPS
Unusual features: (py)LIon can treat collections of ions as rigid bodies to simulate larger objects confined in electrodynamic traps. GPU acceleration is provided through the LAMMPS package.