Precision measurement of the $B^{0}$ meson lifetime using $B^{0} \rightarrow J/ψK^{*0}$ decays with the ATLAS detector

ArXiv 2411.09962 (2024)

Reconstruction and identification of pairs of collimated $τ$-leptons decaying hadronically using $\sqrt{s}=13$ TeV $pp$ collision data with the ATLAS detector

ArXiv 2411.09357 (2024)

Single-photon large-momentum-transfer atom interferometry scheme for Sr or Yb atoms with application to determining the fine-structure constant

Physical Review A: Atomic, Molecular and Optical Physics American Physical Society 110:5 (2024) 053309

Authors:

Jesse Schelfhout, Thomas Hird, Kenneth Hughes, Christopher Foot

Abstract:

The leading experimental determinations of the fine-structure constant 𝛼 currently rely on atomic photon-recoil measurements from Ramsey-Bordé atom interferometry with large-momentum transfer to provide an absolute mass measurement. We propose an experimental scheme for an intermediate-scale differential atom interferometer to measure the photon recoil of neutral atomic species with a single-photon optical clock transition. We calculate trajectories for our scheme that optimize the recoil phase while nullifying the undesired gravity-gradient phase by considering independently launching two clouds of ultracold atoms with the appropriate initial conditions. For Sr and Yb, we find an atom interferometer of height 3 m to be sufficient for an absolute mass measurement precision of 𝛥⁢𝑚/𝑚∼1×10−11 with current technology. Such a precise measurement would halve the current uncertainty in 𝛼 — an uncertainty that would no longer be limited by an absolute mass measurement. The removal of this limitation would allow the current uncertainty in 𝛼 to be reduced by a factor of 10 by corresponding improvements in relative mass measurements, thus paving the way for higher-precision tests of the standard model of particle physics.

Search for vector-like leptons coupling to first- and second-generation Standard Model leptons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2411.07143 (2024)

Search for a resonance decaying into a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton–proton collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:11 (2024) 47

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala

Abstract:

A search for the resonant production of a heavy scalar X decaying into a Higgs boson and a new lighter scalar S, through the process X → S(→bb¯)H(→γγ), where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb−1 of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 ≤ mX ≤ 1000 GeV and 15 ≤ mS ≤ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the (mX, mS) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for (mX, mS) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.