Baryogenesis via particle-antiparticle oscillations
Physical Review D American Physical Society 93:123528 (2016)
Abstract:
CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100 GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U(1)R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.Measurement of using pairs from bosons produced in collisions at a center-of-momentum energy of 1.96 TeV
Physical Review D American Physical Society 93:11 (2016) 112016
Abstract:
At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.Measurement of the $WW$ and $WZ$ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set
(2016)
Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at sqrt(s) = 8 TeV
ArXiv 1606.05864 (2016)
Phenomenological MSSM interpretation of CMS searches in pp collisions at sqrt(s) = 7 and 8 TeV
ArXiv 1606.03577 (2016)