Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC

ArXiv 1303.0763 (2013)

Measurement of W-boson polarization in top-quark decay using the full CDF Run II data set

Physical Review D - Particles, Fields, Gravitation and Cosmology 87:3 (2013)

Authors:

T Aaltonen, S Amerio, D Amidei, A Anastassov, A Annovi, J Antos, G Apollinari, JA Appel, T Arisawa, A Artikov, J Asaadi, W Ashmanskas, B Auerbach, A Aurisano, F Azfar, W Badgett, T Bae, A Barbaro-Galtieri, VE Barnes, BA Barnett, P Barria, P Bartos, M Bauce, F Bedeschi, S Behari, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, KR Bland, B Blumenfeld, A Bocci, A Bodek, D Bortoletto, J Boudreau, A Boveia, L Brigliadori, C Bromberg, E Brucken, J Budagov, HS Budd, K Burkett, G Busetto, P Bussey, P Butti, A Buzatu, A Calamba, S Camarda, M Campanelli, F Canelli, B Carls, D Carlsmith, R Carosi, S Carrillo, B Casal, M Casarsa, A Castro, P Catastini, D Cauz, V Cavaliere, M Cavalli-Sforza, A Cerri, L Cerrito, YC Chen, M Chertok, G Chiarelli, G Chlachidze, K Cho, D Chokheli, MA Ciocci, A Clark, C Clarke, ME Convery, J Conway, M Corbo, M Cordelli, CA Cox, DJ Cox, M Cremonesi, D Cruz, J Cuevas, R Culbertson, N D'Ascenzo, M Datta, P De Barbaro, L Demortier, M Deninno, F Devoto, M D'Errico, A Di Canto, B Di Ruzza, JR Dittmann, M D'Onofrio, S Donati, M Dorigo, A Driutti, K Ebina, R Edgar, A Elagin

Abstract:

We measure the polarization of W bosons from top-quark (t) decays into final states with a charged lepton and jets, tt̄→W+bW -b̄→ℓνbqq̄′b̄, using the full Run II data set collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb-1. A model-independent method simultaneously determines the fraction of longitudinal (f0) and right-handed (f+) W bosons to yield f0=0.726±0. 066(stat)±0.067(syst) and f+=-0.045±0.044(stat) ±0.058(syst) with a correlation coefficient of -0.69. Additional results are presented under various standard model assumptions. No significant discrepancies with the standard model are observed. © 2013 American Physical Society.

Retrofitted Natural Supersymmetry from a U(1)

ArXiv 1302.5423 (2013)

Authors:

Edward Hardy, John March-Russell

Abstract:

We propose that a single, spontaneously broken, U(1) gauge symmetry may be responsible for suppressing both the first two generation Yukawa couplings, and also, in a correlated manner, parameters in the dynamical supersymmetry (SUSY) breaking sector by the mechanism of retrofitting. In the dynamical SUSY breaking sector, these small parameters are typically required in order to introduce R-symmetry breaking in a controlled manner and obtain phenomenologically viable meta-stable vacua. The heavy U(1) multiplet mediates a dominant contribution to the first two generation MSSM sfermion soft masses, while gauge mediation provides a parametrically suppressed soft term contribution to the stop and most other states, so realising a natural SUSY spectrum in a fashion consistent with SUSY unification. In explicit models the spectra obtained can be such that current LHC limits are evaded, and predictions of flavour changing processes are consistent with observation. We examine both implementations with low scale mediation, and string-motivated examples where the U(1) is anomalous before the inclusion of a generalised Green-Schwarz mechanism.

Retrofitted Natural Supersymmetry from a U(1)

(2013)

Authors:

Edward Hardy, John March-Russell

Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs

Physical Review Letters 110:8 (2013)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, E Aguilo, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, M Pernicka, D Rabady, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Waltenberger, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, S Alderweireldt, M Bansal, S Bansal, T Cornelis, EA De Wolf, X Janssen, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'Hondt, R Gonzalez Suarez, A Kalogeropoulos, M Maes, A Olbrechts, S Tavernier, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, B Clerbaux, G De Lentdecker, V Dero, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, T Reis, L Thomas, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, A Cimmino, S Costantini, G Garcia, M Grunewald, B Klein, J Lellouch, A Marinov, J McCartin, AA Ocampo Rios, D Ryckbosch, M Sigamani, N Strobbe, F Thyssen, M Tytgat, S Walsh, E Yazgan, N Zaganidis, S Basegmez, G Bruno, R Castello, L Ceard, C Delaere, T Du Pree

Abstract:

A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb-1, collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2±0.6(stat) ±0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. © 2013 CERN. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.