A First Mass Production of Gas Electron Multipliers
ArXiv hep-ex/0304013 (2003)
Abstract:
We report on the manufacture of a first batch of approximately 2,000 Gas Electron Multipliers (GEMs) using 3M's fully automated roll to roll flexible circuit production line. This process allows low-cost, reproducible fabrication of a high volume of GEMs of dimensions up to 30$\times$30 cm$^{2}$. First tests indicate that the resulting GEMs have optimal properties as radiation detectors. Production techniques and preliminary measurements of GEM performance are described. This now demonstrated industrial capability should help further establish the prominence of micropattern gas detectors in accelerator based and non-accelerator particle physics, imaging and photodetection.Search for long-lived charged massive particles in pp collisions at square root s = 1.8 TeV.
Phys Rev Lett 90:13 (2003) 131801
Abstract:
We report a search for the production of long-lived charged massive particles in a data sample of 90 pb(-1) of square root[s]=1.8 TeV pp collisions recorded by the Collider Detector at Fermilab. The search uses the muonlike penetration and anomalously high ionization energy loss signature expected for such a particle to discriminate it from backgrounds. The data are found to agree with background expectations, and cross section limits of O(1) pb are derived using two reference models, a stable quark and a stable scalar lepton.Strong evaporative cooling towards Bose-Einstein condensation of a magnetically trapped caesium gas
Journal of Optics B: Quantum and Semiclassical Optics 5:2 (2003)
Abstract:
We have evaporatively cooled caesium atoms in a magnetic trap to temperatures as low as 8 nK and produced a final phase space density within a factor of four of that required for the onset of Bose-Einstein condensation. At the end of the forced radio-frequency evaporation, 1500 atoms in the F = 3, mF = -3 state remain in the magnetic trap. We observe a decrease in the one-dimensional evaporative cooling efficiency at very low temperatures as the trapped sample enters the collisionally thick (hydrodynamic) regime. To alleviate this problem we propose a modified trapping scheme where three-dimensional evaporation is possible. In addition, we report measurements of the two-body inelastic collision rates for caesium atoms as a function of magnetic field. We confirm the positions, with reduced uncertainties, of three previously identified resonances at magnetic fields of 108.87(6), 118.46(3) and 133.52(3) G.Strong evaporative cooling towards Bose-Einstein condensation of a magnetically trapped caesium gas
J OPT B-QUANTUM S O 5:2 (2003) S107-S111
Abstract:
We have evaporatively cooled caesium atoms in a magnetic trap to temperatures as low as 8 nK and produced a final phase space density within a factor of four of that required for the onset of Bose-Einstein condensation. At the end of the forced radio-frequency evaporation, 1500 atoms in the F = 3, m(F) = -3 state remain in the magnetic trap. We observe a decrease in the one-dimensional evaporative cooling efficiency at very low temperatures as the trapped sample enters the collisionally thick (hydrodynamic) regime. To alleviate this problem we propose a modified trapping scheme where three-dimensional evaporation is possible. In addition, we report measurements of the two-body inelastic collision rates for caesium atoms as a function of magnetic field. We confirm the positions, with reduced uncertainties, of three previously identified resonances at magnetic fields of 108.87(6), 118.46(3) and 133.52(3) G.Irradiation studies of silicon pixel detectors for CMS
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 501:1 (2003) 160-163