Emission from the circumgalactic medium: from cosmological zoom-in simulations to multiwavelength observables

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:2 (2019) 2417-2438

Authors:

R Augustin, S Quiret, B Milliard, C Peroux, D Vibert, J Blaizot, Y Rasera, R Teyssier, S Frank, J-M Deharveng, V Picouet, DC Martin, ET Hamden, Niranjan Thatte, MP Santaella, L Routledge, S Zieleniewski

Abstract:

We simulate the flux emitted from galaxy haloes in order to quantify the brightness of the circumgalactic medium (CGM). We use dedicated zoom-in cosmological simulations with the hydrodynamical adaptive mesh refinement code RAMSES, which are evolved down to z = 0 and reach a maximum spatial resolution of 380 h−1 pc and a gas mass resolution up to 1.8×105 h1 M⊙ in the densest regions. We compute the expected emission from the gas in the CGM using CLOUDY emissivity models for different lines (e.g. Lyα, C IV, O VI, C VI, O VIII) considering UV background fluorescence, gravitational cooling and continuum emission. In the case of Lyα, we additionally consider the scattering of continuum photons. We compare our predictions to current observations and find them to be in good agreement at any redshift after adjusting the Lyα escape fraction. We combine our mock observations with instrument models for Faint Intergalactic Redshifted Emission Balloon-2 (FIREBall-2; UV balloon spectrograph) and HARMONI (visible and NIR IFU on the ELT) to predict CGM observations with either instrument and optimize target selections and observing strategies. Our results show that Lyα emission from the CGM at a redshift of 0.7 will be observable with FIREBall-2 for bright galaxies (NUV∼18 mag), while metal lines like O VI and C IV will remain challenging to detect. HARMONI is found to be well suited to study the CGM at different redshifts with various tracers.

Nuclear molecular outflow in the Seyfert galaxy NGC 3227

Astronomy and Astrophysics EDP Sciences 628 (2019) A65

Authors:

A Alonso Herrero, S García-Burillo, Miguel Pereira-Santaella, RI Davies, F Combes, M Vestergaard, SI Raimundo, Andrew Bunker, T Díaz-Santos, P Gandhi, I García-Bernete, EKS Hicks, SF Hönig, LK Hunt, M Imanishi, T Izumi, NA Levenson, W Maciejewski1, C Packham, C Ramos Almeida, C Ricci, Dimitra Rigopoulou, Patrick Roche, D Rosario, M Schartmann, A Usero, MJ Ward

Abstract:

ALMA observations have revealed nuclear dusty molecular disks or tori with characteristic sizes 15−40 pc in the few Seyferts and low -luminosity AGN that have been studied so far. These structures are generally decoupled both morphologically and kinematically from the host galaxy disk. We present ALMA observations of the CO(2–1) and CO(3–2) molecular gas transitions and associated (sub-) millimeter continua of the nearby Seyfert 1.5 galaxy NGC 3227 with angular resolutions 0.085 − 0.21″ (7–15 pc). On large scales, the cold molecular gas shows circular motions as well as streaming motions on scales of a few hundred parsecs that are associated with a large-scale bar. We fit the nuclear ALMA 1.3 mm emission with an unresolved component and an extended component. The 850 μm emission shows at least two extended components, one along the major axis of the nuclear disk, and the other along the axis of the ionization cone. The molecular gas in the central region (1″ ∼ 73 pc) shows several CO clumps with complex kinematics that appears to be dominated by noncircular motions. While we cannot conclusively demonstrate the presence of a warped nuclear disk, we also detected noncircular motions along the kinematic minor axis. They reach line-of-sight velocities of v − vsys = 150 − 200 km s−1. Assuming that the radial motions are in the plane of the galaxy, we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy that is entrained by the AGN wind. We derive molecular outflow rates of 5 M⊙ yr−1 and 0.6 M⊙ yr−1 at projected distances of up to 30 pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of 5 × 105 M⊙ and an equivalent average column density N(H2) = 2 − 3 × 1023 cm−2 in the inner 15 pc. The nuclear CO(2–1) and CO(3–2) molecular gas and submillimeter continuum emission of NGC 3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN.

ESA Voyage 2050 White Paper: Detecting life outside our solar system with a large high-contrast-imaging mission

arXiv e-prints (2019) arXiv:1908.01803-arXiv:1908.01803

Authors:

Ignas Snellen, Simon Albrecht, Guillem Anglada-Escude, Isabelle Baraffe, Pierre Baudoz, Willy Benz, Jean-Luc Beuzit, Beth Biller, Jayne Birkby, Anthony Boccaletti, Roy van Boekel, Jos de Boer, Matteo Brogi, Lars Buchhave, Ludmila Carone, Mark Claire, Riccardo Claudi, Brice-Olivier Demory, Jean-Michel Desert, Silvano Desidera, Scott Gaudi, Raffaele Gratton, Michael Gillon, John Lee Grenfell, Olivier Guyon, Thomas Henning, Sasha Hinkley, Elsa Huby, Markus Janson, Christiane Helling, Kevin Heng, Markus Kasper, Christoph Keller, Matthew Kenworthy, Oliver Krause, Laura Kreidberg, Nikku Madhusudhan, Anne-Marie Lagrange, Ralf Launhardt, Tim Lenton, Manuel Lopez-Puertas, Anne-Lise Maire, Nathan Mayne, Victoria Meadows, Bertrand Mennesson, Giuseppina Micela, Yamila Miguel, Julien Milli, Michiel Min, Ernst de Mooij, David Mouillet, Mamadou N’Diaye, Valentina D’Orazi, Enric Palle, Isabella Pagano, Giampaolo Piotto, Didier Queloz, Heike Rauer, Ignasi Ribas, Garreth Ruane, Franck Selsis, Frans Snik, Alessandro Sozzetti, Daphne Stam, Christopher Stark, Arthur Vigan, Pieter de Visser

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Nature Reviews Physics Springer Nature 1:7 (2019) 450-462

Authors:

Brant E Robertson, Manda Banerji, Sarah Brough, Roger L Davies, Henry C Ferguson, Ryan Hausen, Sugata Kaviraj, Jeffrey A Newman, Samuel J Schmidt, J Anthony Tyson, Risa H Wechsler

RoboPol: a four-channel optical imaging polarimeter

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 485:2 (2019) 2355-2366

Authors:

AN Ramaprakash, CV Rajarshi, HK Das, P Khodade, D Modi, G Panopoulou, S Maharana, D Blinov, E Angelakis, C Casadio, L Fuhrmann, T Hovatta, S Kiehlmann, OG King, N Kylafis, A Kougentakis, A Kus, A Mahabal, A Marecki, I Myserlis, G Paterakis, E Paleologou, I Liodakis, I Papadakis, I Papamastorakis, V Pavlidou, E Pazderski, TJ Pearson, ACS Readhead, P Reig, A Słowikowska, K Tassis, JA Zensus

Abstract:

ABSTRACT We present the design and performance of RoboPol, a four-channel optical polarimeter operating at the Skinakas Observatory in Crete, Greece. RoboPol is capable of measuring both relative linear Stokes parameters q and u (and the total intensity I) in one sky exposure. Though primarily used to measure the polarization of point sources in the R band, the instrument features additional filters (B, V, and I), enabling multiwavelength imaging polarimetry over a large field of view (13.6′ × 13.6′). We demonstrate the accuracy and stability of the instrument throughout its 5 yr of operation. Best performance is achieved within the central region of the field of view and in the R band. For such measurements the systematic uncertainty is below 0.1 per cent in fractional linear polarization, p (0.05 per cent maximum likelihood). Throughout all observing seasons the instrumental polarization varies within 0.1 per cent in p and within ∼1° in polarization angle.