High angular resolution ALMA images of dust and molecules in the SN 1987A ejecta
Astrophysical Journal American Astronomical Society 886:1 (2019) 51
Abstract:
We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO J = 2 $\to $ 1, J = 6 $\to $ 5, and SiO J = 5 $\to $ 4 to J = 7 $\to $ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in Hα images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 $\to $ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 $\to $ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 $\to $ 1 and SiO J = 5 $\to $ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared–millimeter spectral energy distribution give ejecta dust temperatures of 18–23 K. We revise the ejecta dust mass to M dust = 0.2–0.4 ${M}_{\odot }$ for carbon or silicate grains, or a maximum of <0.7 ${M}_{\odot }$ for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.The C-Band All-Sky Survey (C-BASS): Simulated parametric fitting in single pixels in total intensity and polarization
Monthly Notices of the Royal Astronomical Society Oxford University Press 490:2 (2019) 2958-2975
Abstract:
The cosmic microwave background (CMB) B-mode signal is potentially weaker than the diffuse Galactic foregrounds over most of the sky at any frequency. A common method of separating the CMB from these foregrounds is via pixel-based parametric-model fitting. There are not currently enough all-sky maps to fit anything more than the most simple models of the sky. By simulating the emission in seven representative pixels, we demonstrate that the inclusion of a 5 GHz data point allows for more complex models of low-frequency foregrounds to be fitted than at present. It is shown that the inclusion of the C-BASS data will significantly reduce the uncertainties in a number of key parameters in the modelling of both the galactic foregrounds and the CMB. The extra data allow estimates of the synchrotron spectral index to be constrained much more strongly than is presently possible, with corresponding improvements in the accuracy of the recovery of the CMB amplitude. However, we show that to place good limits on models of the synchrotron spectral curvature will require additional low-frequency data.A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate redshift galaxies with WEAVE
(2019)
Accretion and star formation in ‘radio-quiet’ quasars
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 15:S356 (2019) 204-208
Better support for collaborations preparing for large-scale projects: the case study of the LSST Science Collaborations
Bulletin of the American Astronomical Society American Astronomical Society 51:7 (2019) 185