AtlFast3: The Next Generation of Fast Simulation in ATLAS
Computing and Software for Big Science 6:1 (2022)
Abstract:
The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.Emulating the impact of additional proton–proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events
Computing and Software for Big Science 6:1 (2022)
Abstract:
The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.Measurement of the cross-section ratio σψ(2S) /σJ/ψ(1S) in exclusive photoproduction at HERA
Journal of High Energy Physics 2022:12 (2022)
Abstract:
The exclusive photoproduction reactions γp → J/ψ(1S)p and γp → ψ(2S)p have been measured at an ep centre-of-mass energy of 318 GeV with the ZEUS detector at HERA using an integrated luminosity of 373 pb−1. The measurement was made in the kinematic range 30 < W < 180 GeV, Q2< 1 GeV2 and |t| < 1 GeV2, where W is the photon-proton centre-of-mass energy, Q2 is the photon virtuality and t is the squared four-momentum transfer at the proton vertex. The decay channels used were J/ψ(1S) → μ+μ−, ψ(2S) → μ+μ− and ψ(2S) → J/ψ(1S)π+π− with subsequent decay J/ψ(1S) → μ+μ−. The ratio of the production cross sections, R = σψ(2S)/σJ/ψ(1S), has been measured as a function of W and |t| and compared to previous data in photoproduction and deep inelastic scattering and with predictions of QCD-inspired models of exclusive vector-meson production, which are in reasonable agreement with the data.Ion microscope imaging mass spectrometry using a Timepix3-based optical camera
Journal of the American Society for Mass Spectrometry American Chemical Society 33:12 (2022) 2328-2332
Abstract:
Ion microscopy allows for high-throughput mass spectrometry imaging. In order to resolve congested mass spectra, a high degree of timing precision is required from the microscope detector. In this paper we present an ion microscope mass spectrometer that uses a Timepix3 hybrid pixel readout with an optimal 1.56 ns resolution. A novel triggering technique is also employed to remove the need for an external time-to-digital converter (TDC) and allow the experiment to be performed using a low-cost and commercially available readout system. Results obtained from samples of rhodamine B demonstrate the application of multimass imaging sensors for microscope mass spectrometry imaging with high mass resolution.Recent results with radiation-tolerant TowerJazz 180 nm MALTA sensors
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 1041 (2022) ARTN 167390