An old stellar population or diffuse nebular continuum emission discovered in Green Pea galaxies

Astrophysical Journal Letters American Astronomical Society 912:2 (2021) L22

Authors:

Leonardo Clarke, Claudia Scarlata, Vihang Mehta, William C Keel, Carolin Cardamone, Matthew Hayes, Nico Adams, Hugh Dickinson, Lucy Fortson, Sandor Kruk, Chris Lintott, Brooke Simmons

Abstract:

We use new Hubble Space Telescope (HST) images of nine Green Pea galaxies (GPGs) to study their resolved structure and color. The choice of filters, F555W and F850LP, together with the redshift of the galaxies (z ~ 0.25), minimizes the contribution of the nebular [O iii] and Hα emission lines to the broadband images. While these galaxies are typically very blue in color, our analysis reveals that it is only the dominant stellar clusters that are blue. Each GPG does clearly show the presence of at least one bright and compact star-forming region, but these are invariably superimposed on a more extended and lower surface brightness emission. Moreover, the colors of the star-forming regions are on average bluer than those of the diffuse emission, reaching up to 0.6 magnitudes bluer. Assuming that the diffuse and compact components have constant and single-burst star formation histories, respectively, the observed colors imply that the diffuse components (possibly the host galaxy of the star formation episode) have, on average, old stellar ages (>1 Gyr), while the star clusters are younger than 500 Myr. While a redder stellar component is perhaps the most plausible explanation for these results, the limitations of our current data set lead us to examine possible alternative mechanisms, particularly recombination emission processes, which are unusually prominent in systems with such strong line emission. With the available data, however, it is not possible to distinguish between these two interpretations. A substantial presence of old stars would indicate that the mechanisms allowing large escape fractions in these local galaxies may be different from those at play during the reionization epoch.

The multiwavelength properties of red QSOs: Evidence for dusty winds as the origin of QSO reddening

Astronomy & Astrophysics EDP Sciences 649 (2021) a102

Authors:

G Calistro Rivera, DM Alexander, DJ Rosario, CM Harrison, M Stalevski, S Rakshit, VA Fawcett, LK Morabito, L Klindt, PN Best, M Bonato, RAA Bowler, T Costa, R Kondapally

Inertial spontaneous symmetry breaking and quantum scale invariance

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society (2021)

Authors:

Pedro Ferreira, CT Hill, Graham G Ross

Abstract:

Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.

A space mission to map the entire observable universe using the CMB as a backlight: Voyage 2050 science white paper

Experimental Astronomy (2021)

Authors:

K Basu, M Remazeilles, JB Melin, D Alonso, JG Bartlett, N Battaglia, J Chluba, E Churazov, J Delabrouille, J Erler, S Ferraro, C Hernández-Monteagudo, JC Hill, SC Hotinli, I Khabibullin, M Madhavacheril, T Mroczkowski, D Nagai, S Raghunathan, JAR Martin, J Sayers, D Scott, N Sugiyama, R Sunyaev, Í Zubeldia

Abstract:

This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the interactions of cosmic microwave background (CMB) photons with the cosmic web. Our aim is specifically to use the CMB as a backlight – and survey the gas, total mass, and stellar content of the entire observable Universe by means of analyzing the spatial and spectral distortions imprinted on it. These distortions result from two major processes that impact on CMB photons: scattering by free electrons and atoms (Sunyaev-Zeldovich effect in diverse forms, Rayleigh scattering, resonant scattering) and deflection by gravitational potential (lensing effect). Even though the list of topics collected in this White Paper is not exhaustive, it helps to illustrate the exceptional diversity of major scientific questions that can be addressed by a space mission that will reach an angular resolution of 1.5 arcmin (goal 1 arcmin), have an average sensitivity better than 1 μK-arcmin, and span the microwave frequency range from roughly 50 GHz to 1 THz. The current paper also highlights the synergy of our Backlight mission concept with several upcoming and proposed ground-based CMB experiments.

VINTERGATAN III: how to reset the metallicity of the Milky Way

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5868-5876

Authors:

Florent Renaud, Oscar Agertz, Eric P Andersson, Justin I Read, Nils Ryde, Thomas Bensby, Martin P Rey, Diane K Feuillet

Abstract:

ABSTRACT Using the cosmological zoom simulation VINTERGATAN, we present a new scenario for the onset of star formation at the metal-poor end of the low-[α/Fe] sequence in a Milky Way-like galaxy. In this scenario, the galaxy is fuelled by two distinct gas flows. One is enriched by outflows from massive galaxies, but not the other. While the former feeds the inner galactic region, the latter fuels an outer gas disc, inclined with respect to the main galactic plane, and with a significantly poorer chemical content. The first passage of the last major merger galaxy triggers tidal compression in the outer disc, which increases the gas density and eventually leads to star formation, at a metallicity 0.75 dex lower than the inner galaxy. This forms the first stars of the low-[α/Fe] sequence. These in situ stars have halo-like kinematics, similar to what is observed in the Milky Way, due to the inclination of the outer disc that eventually aligns with the inner one via gravitational torques. We show that this tilting disc scenario is likely to be common in Milky Way-like galaxies. This process implies that the low-[α/Fe] sequence is populated in situ, simultaneously from two formation channels, in the inner and the outer galaxy, with distinct metallicities. This contrasts with purely sequential scenarios for the assembly of the Milky Way disc and could be tested observationally.