Constraints on galileons from the positions of supermassive black holes

(2020)

Authors:

Deaglan J Bartlett, Harry Desmond, Pedro G Ferreira

The LSST DESC DC2 Simulated Sky Survey

(2020)

Authors:

LSST Dark Energy Science Collaboration, Bela Abolfathi, David Alonso, Robert Armstrong, Éric Aubourg, Humna Awan, Yadu N Babuji, Franz Erik Bauer, Rachel Bean, George Beckett, Rahul Biswas, Joanne R Bogart, Dominique Boutigny, Kyle Chard, James Chiang, Chuck F Claver, Johann Cohen-Tanugi, Céline Combet, Andrew J Connolly, Scott F Daniel, Seth W Digel, Alex Drlica-Wagner, Richard Dubois, Emmanuel Gangler, Eric Gawiser, Thomas Glanzman, Phillipe Gris, Salman Habib, Andrew P Hearin, Katrin Heitmann, Fabio Hernandez, Renée Hložek, Joseph Hollowed, Mustapha Ishak, Željko Ivezić, Mike Jarvis, Saurabh W Jha, Steven M Kahn, J Bryce Kalmbach, Heather M Kelly, Eve Kovacs, Danila Korytov, K Simon Krughoff, Craig S Lage, François Lanusse, Patricia Larsen, Laurent Le Guillou, Nan Li, Emily Phillips Longley, Robert H Lupton, Rachel Mandelbaum, Yao-Yuan Mao, Phil Marshall, Joshua E Meyers, Marc Moniez, Christopher B Morrison, Andrei Nomerotski, Paul O'Connor, HyeYun Park, Ji Won Park, Julien Peloton, Daniel Perrefort, James Perry, Stéphane Plaszczynski, Adrian Pope, Andrew Rasmussen, Kevin Reil, Aaron J Roodman, Eli S Rykoff, F Javier Sánchez, Samuel J Schmidt, Daniel Scolnic, Christopher W Stubbs, J Anthony Tyson, Thomas D Uram, Antonia Villarreal, Christopher W Walter, Matthew P Wiesner, W Michael Wood-Vasey, Joe Zuntz

Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations (vol 491, pg 5464, 2020)

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 499:1 (2020) 520-522

Authors:

Nick Koukoufilippas, David Alonso, Maciej Bilicki, John A Peacock

Abstract:

© 2020 Oxford University Press. All rights reserved. The paper 'Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations' was published inMNRAS, 491, 5464-5480 (2020). After publication a typographical error in our analysis pipeline code was discovered, which slightly affected some of our results. In particular, our implementation of the generalised NFW profile (GNFW) described in Arnaud et al. (2010) lacked a factor of 1 - bH in the calculation of R500. We have corrected this error, re-run our analysis and present our updated results and comments (where applicable) in this manuscript. (i) Table 3 is updated with new best-fitting values. (ii) Likewise, Figs 8 and 9 are also updated with the new values of the best-fitting 1 - bHand<bPe>. (iii) Finally, our combined constraint on bH following this procedure (equation 48) is 1 - bH= 0.75 ± 0.03. While the main conclusions remain unchanged, it is worth pointing out that the best-fitting mass bias value 1 - bH= 0.75 ± 0.03 is now at a ~3-4s tension with the results measured by Planck Collaboration et al. (2016a) (1 - bH= 0.58 ± 0.04), combining tSZ cluster number counts and the TT CMB power spectrum. Consequently, our results can no longer be viewed as evidence of compatibility between the best-fit cosmology and the clustering properties of galaxies in the datasets used. Further, the best-fitting value of the mass bias is no longer at odds with the one derived from hydrodynamical simulations (Biffi et al. 2016), the estimate from CMB lensing mass calibration (Zubeldia & Challinor 2019), and other direct calibration efforts (e.g. Smith et al. 2016; Eckert et al. 2019), which seem to prefer smaller missing mass fractions (1 - bH~ 0.8). Lastly, our results are in agreement with Chiang et al. (2020), who explore the cosmic thermal history using SZ tomography.

Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations (vol 491, pg 5464, 2020)

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 499:1 (2020) 520-522

Authors:

Nick Koukoufilippas, David Alonso, Maciej Bilicki, John A Peacock

Abstract:

© 2020 Oxford University Press. All rights reserved. The paper 'Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations' was published inMNRAS, 491, 5464-5480 (2020). After publication a typographical error in our analysis pipeline code was discovered, which slightly affected some of our results. In particular, our implementation of the generalised NFW profile (GNFW) described in Arnaud et al. (2010) lacked a factor of 1 - bH in the calculation of R500. We have corrected this error, re-run our analysis and present our updated results and comments (where applicable) in this manuscript. (i) Table 3 is updated with new best-fitting values. (ii) Likewise, Figs 8 and 9 are also updated with the new values of the best-fitting 1 - bHand<bPe>. (iii) Finally, our combined constraint on bH following this procedure (equation 48) is 1 - bH= 0.75 ± 0.03. While the main conclusions remain unchanged, it is worth pointing out that the best-fitting mass bias value 1 - bH= 0.75 ± 0.03 is now at a ~3-4s tension with the results measured by Planck Collaboration et al. (2016a) (1 - bH= 0.58 ± 0.04), combining tSZ cluster number counts and the TT CMB power spectrum. Consequently, our results can no longer be viewed as evidence of compatibility between the best-fit cosmology and the clustering properties of galaxies in the datasets used. Further, the best-fitting value of the mass bias is no longer at odds with the one derived from hydrodynamical simulations (Biffi et al. 2016), the estimate from CMB lensing mass calibration (Zubeldia & Challinor 2019), and other direct calibration efforts (e.g. Smith et al. 2016; Eckert et al. 2019), which seem to prefer smaller missing mass fractions (1 - bH~ 0.8). Lastly, our results are in agreement with Chiang et al. (2020), who explore the cosmic thermal history using SZ tomography.

Dark-matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions

(2020)

Authors:

RA Jackson, S Kaviraj, G Martin, JEG Devriendt, A Slyz, J Silk, Y Dubois, SK Yi, C Pichon, M Volonteri, H Choi, T Kimm, K Kraljic, S Peirani